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Introduction

This paper is an announce of new idea and a survey note for nonassociative
algebras and triple systems, in particular it will be explained a history about
our research works mainly. And this work is in close contact with a symmet-
ric space with commplex structure. That is, in related with curvature and
torsion tensors of differential geometry.

From mathematical history’s viewpoint, the concept discussed here first
appeared with a class of nonassociative algebras, that is commutative Jordan
algebras, which was the defining subspace g−1 in the Tits-Kantor-Koecher
(for short TKK) construction of 3-graded Lie algebras g = g−1 ⊕ g0 ⊕ g1,
such that [gi, gj] ⊆ gi+j. Nonassociative algebras are rich in algebraic struc-
tures, and they provide an important common ground for various branches of
mathematics, not only for pure algebra and differential geometry, but also for
representation theory and algebraic geometry (for example, [11], [39], [63],
[64], [65]). Specially, the concept of nonassociative algebras such as Jordan
and Lie (super)algebras plays an important role in many mathematical and
physical subjects ([5], [10]-[13], [15], [26], [28], [29], [38], [47], [48], [52], [55],
[56], [57] [58], [60]). We also note that the construction and characterization
of these algebras can be expressed in terms of the notion of triple systems ([1]-
[4], [6]-[8], [20], [23], [24], [33], [38], [43]-[46], [49], [51]) by using the standard
embedding method ([22], [41], [42], [50], [54]). In particular, the generalized
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Jordan triple system of second order, or (−1, 1)-Freudenthal Kantor triple
system (for short (−1, 1)-FKTS), is a useful concept ([13]-[21], [34]-[37], [40],
[53]) for the constructions of simple Lie algebras, while the (−1,−1)-FKTS
plays the same role ([6], [22], [25], [27], [58], [59]) for the construction of Lie
superalgebras, while the δ-Jordan Lie triple systems act similarly for that
of Jordan superalgebras ([23], [24], [49]). Specially, we have constructed a
model of Lie superalgebras D(2, 1;α), G(3) and F (4) ([25]).

As a special comment of this introduction, we provide well-known results
due to O. Loos(1939-2020) as follows; if A is a unital commutative Jordan
algebra, then the triple product given by

{xyz} = (xy)z + x(yz)− y(xz)

defines a Jordan triple system, i.e., it satisfies the two relations {xy{abc}} =
{{xya}bc}−{a{yxb}c}+{ab{xyc}} (this relation is often called a fundamen-
tal identity), {xyz} = {zyx} and next the new triple product [xyz] given by

[xyz] = {xyz} − {yxz}

defines a Lie triple system.
Briefly summarizing this article, we will generalize these results and con-

struct Lie (super)algebras associated with a generalized Jordan triple system.
Toward to its applications, we will give a construction of symmmetric spaces
with an almost complex structure.

Roughly describing, we have an illustration;
Algebraic structures ⇐⇒ Geometric structures.

For examples, symmetric, R-symmetric, and homogeneous spaces, totally
geodesic manifold, symmetric domains, etc.

1 Preamble and Definitions

In this paper triple systems have finite dimension being defined over a field
Φ of characteristic ̸= 2 or 3, unless otherwise specified. In order to render
the paper as self-contained as possible, we recall first the definition of a
generalized Jordan triple system of second order (for short GJTS of 2nd
order).

A vector space V over a field Φ endowed with a trilinear operation V ×
V × V → V , (x, y, z) 7−→ (xyz) is said to be a GJTS of 2nd order if the
following conditions are fulfilled:

(ab(xyz)) = ((abx)yz)− (x(bay)z) + (xy(abz)), (1)
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K(K(a, b)x, y)− L(y, x)K(a, b)−K(a, b)L(x, y) = 0, (2)

where L(a, b)c := (abc) and K(a, b)c := (acb)− (bca).
A Jordan triple system (for short JTS) satisfies (1) and the following

condition
(abc) = (cba), i.e., K(a, c)b = 0. (3)

The JTS is a special case in the GJTS of 2nd order since K(x, y) ≡ 0.
We next can generalize the concept of GJTS of 2nd order as follows (see

[13], [14], [18], [22], [28], [54] and the earlier references therein).
For ε = ±1 and δ = ±1, a triple product that satisfies the identities

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)), (4)

K(K(a, b)x, y)− L(y, x)K(a, b) + εK(a, b)L(x, y) = 0, (5)

where
L(a, b)c := (abc), K(a, b)c := (acb)− δ(bca), (6)

is called an (ε, δ)−Freudenthal − Kantor triple system (for short (ε, δ)-
FKTS). An (ε, δ)-FKTS is said to be unitary if Id ∈ {K(a, b)}span.

A triple system satisfying only the identity (4) is called a generalized
FKTS (for short GFKTS), while the identity (5) is called the second order
condition.
Remark From the relation Eq. (6), we note that

K(b, a) = −δK(a, b). (7)

A triple system is called a (α, β, γ) triple system associated with a bilinear
form if

(xyz) = α < x, y > z + β < y, z > x+ γ < z, x > y,

where < x, y > is a bilinear form such that < x, y >= κ < y, x >, κ = ±1,
α, β, γ ∈ Φ.

From now on we will mainly consider this type of triple system.
An (ε, δ)-FKTS is said to be balanced if there is a bilinear form < x, y >∈

Φ∗ such that K(x, y) =< x, y > Id, that is, dim {K(x, y)}span = 1 holds.
Remark We note that a balanced triple system (i.e., it fulfills K(x, y) =<
x, y > Id) is unitary, since Id ∈ {K(x, y)}span.

Triple products are denoted by (xyz), {xyz}, [xyz] and < xyz > upon
their suitability.
Remark We note that the concept of GJTS of 2nd order coincides with that
of (−1, 1)-FKTS. Thus we can construct the corresponding Lie algebras by
means of the standard embedding method ([6], [13]-[18], [22], [25], [27], [36],
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[54]).
For δ = ±1, a triple system (a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie triple
system (for short δ-LTS) if the following three identities are fulfilled

[abc] = −δ[bac],
[abc] + [bca] + [cab] = 0,

[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]],
(8)

where a, b, x, y, z ∈ V . An 1-LTS is a LTS while a −1-LTS is an anti-LTS,
by ([14]). Note that the set L(V, V ) of all left multiplications L(x, y) of V
is a Lie subalgebra of Der V , where we denote by L(x, y)z = [xyz], and
[X, Y ] = XY − Y X, ∀X,Y ∈ L(V, V ).
Proposition 1.1 ([14], [15], [22]) Let (U(ε, δ), < xyz >) be an (ε, δ)-FKTS.
If J is an endomorphism of U(ε, δ) such that J < xyz >=< JxJyJz > and
J2 = −εδId, then (U(ε, δ), [xyz]) is a LTS (if δ = 1) or an anti-LTS (if
δ = −1) with respect to the product

[xyz] :=< xJyz > −δ < yJxz > +δ < xJzy > − < yJzx > . (9)

Corollary ([13]) Let U(ε, δ) be an (ε, δ)-FKTS. Then the vector space T (ε, δ) =
U(ε, δ) ⊕ U(ε, δ) becomes a LTS (if δ = 1) or an anti-LTS (if δ = −1) with
respect to the triple product

[(
a

b

)(
c

d

)(
e

f

)]
=

(
L(a, d)− δL(c, b) δK(a, c)

−εK(b, d) ε(L(d, a)− δL(b, c))

)(
e

f

)
. (10)

Thus we can obtain the standard embedding Lie algebra (if δ = 1) or Lie
superalgebra (if δ = −1), L(U(ε, δ)) = D(T (ε, δ), T (ε, δ)) ⊕ T (ε, δ), associ-
ated with T (ε, δ) where D(T (ε, δ), T (ε, δ)) is the set of inner derivations of
T (ε, δ);

D(T (ε, δ), T (ε, δ)) :=
{(

L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)}
span

,

T (ε, δ) :=
{(

x

y

)∣∣∣∣x, y ∈ U(ε, δ)
}
span

.

We use the following notation:

k := {K(x, y) ∈ End U(ε, δ)|x, y ∈ U(ε, δ)} and

{EFG} := EFG+GFE, ∀E,F,G ∈ k.
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Then, we may make the structure of a JTS k with respect to the triple prod-
uct {EFG} ∈ k ([20]). Also the JTS k is called nondegenerate if K(x, y) = 0
for any y ∈ U(ϵ, δ) implies x = 0. Hence we have the following Propositon.
Proposition 1.2 ([15], [31]) Let U be a unitary (ε, δ)-FKTS and L(U)
be the standard embedding Lie (super)algebra associated with U. Then the
following are equivalent:

(i) U is simple,
(ii) the Lie (super)algebra L(U) is simple,
(iii) the JTS k := {K(a, b)}span is simple and nondegenerate.

Remark We note that L(U) = L(U(ε, δ)) := L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

is the five graded Lie (super)algebra such that U(ε, δ)⊕ U(ε, δ) = L−1 ⊕ L1

=T (ε, δ) (δ-LTS), L−2 = k (JTS) and D(T (ε, δ), T (ε, δ)) = L−2 ⊕ L0 ⊕ L2

(the derivation of T (ε, δ)) equipped with [Li, Lj] ⊆ Li+j and L−1 ⊕ L1 =
L(U)/L−2 ⊕ L0 ⊕ L2. In Introduction, we had used the notation g = g−1 ⊕
g0⊕ g1 instead of L−1⊕L0⊕L1. This Lie (super)algebra construction is one
of reasons to study nonassociative algebras and triple systems without using
root systems (for a Lie superalgebra, refer to ([12], [52])).

2 A generalized curvature and torsion ten-

sors

Let L = L(U(ε, δ)) = L(W,W )⊕W be the Lie (super)algebra defined from
a δ LTS as in section one, that is, the δ-LTS W = T (ε, δ) = L−1 ⊕ L1 is
induced from L−1 = U(ε, δ) (as L−1 has the structure of a (ε, δ)-FKTS).

We introduce a generalization of covariant derivative ▽ in differential
geometry as follows; ▽ : L → End L defined by

▽XY = [X, Y ] = −δ[Y,X],
▽X [Y, Z] = [Y ZX] = −δ[ZY X],
▽[X,Y ]Z = −[XY Z] = −δ[Y XZ],
▽[X,Y ][V, Z] = [[V, Z][X, Y ]] = −δ[[X, Y ][V, Z]],
for any X,Y, Z ∈ W.
Furtheremore, a generalized curvature tensor defined by

Cδ(X, Y ) = ▽X ▽Y −δ ▽Y ▽X −▽[X,Y ] (11)

is identically zero, i.e., Cδ(X,Y ) = 0 in L, for any X, Y ∈ W. Indeed, we
demonstrate the proof below.

First we calculate

Cδ(X, Y )Z = (▽X ▽Y −δ ▽Y ▽X)Z −▽[X,Y ]Z
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= ▽X [Y, Z]− δ ▽Y [X,Z] + [XY Z]

= [Y ZX]− δ[XZY ] + [XY Z]

= [Y ZX] + [ZXY ] + [XY Z] = 0.

Second, it follow

Cδ(X, Y )[V, Z] = (▽X ▽Y −δ ▽Y ▽X)[V, Z]−▽[X,Y ][V, Z]

= [X, [V ZY ]]− δ[Y, [V ZX]] + δ[[X, Y ], [V, Z]]

= [X,L(V, Z)Y ]− δ[Y, L(V, Z)X]− L(V, Z)[X,Y ] = 0

(by [Y, L(V, Z)X] = −δ[L(V, Z)X, Y ] and [[X, Y ], [V, Z]] = −δ[[V, Z], [X, Y ]])
for any X,Y, Z, V ∈ T (ε, δ).

However a generalized torsion tensor defined by

Sδ(X,Y ) = ▽XY − δ ▽Y X − [X, Y ] (12)

is not zero, since it gives Sδ(X,Y ) = [X, Y ]− δ[Y,X]− [X,Y ] = [X, Y ].
To later section we next define the Nijenhuis operator

N(X,Y ) = [JX, JY ] + J2[X,Y ]− J [JX, Y ]− J [X, JY ],

where J is an almost complex structure on W , this concept (the case of
δ = 1) is appeared in [32].

3 Examples of (ε, δ)-JTS

We consider here examples of the particular case when K(x, y) ≡ 0 (identi-
cally), that is of an (ε, δ)-JTS, or of (α, β, γ) triple systems.
Example 3.1 Let V be a vector space with a symmetric bilinear form <
x, y >. Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y

defines on V a (−1, 1)-JTS.
Note that (−1, 1)-JTS is same as the JTS.
Example 3.2 Let V be a vector space with an anti-symmetric bilinear form
< x, y >. Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y

defines on V a (1,−1)-JTS.
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Example 3.3 Let V be a vector space with a symmetric bilinear form <
x, y >. Then

< xyz >=< x, y > z− < y, z > x

defines on V a (−1,−1)-JTS.
Example 3.4 Let V be a vector space with an anti-symmetric bilinear form
< x, y >. Then

< xyz >=< x, y > z− < y, z > x

defines on V a (1, 1)-JTS.
Example 3.5 Let V be a set of alternative matrix Alt(n,Φ) = {x|tx = −x}.
Then

< xyz >= xtyz − εztyx, where ∀ x, y, z ∈ V

defines on V a (ε,−ε) JTS.
Proposition 3.1 Let (U,< xyz >) be an (ε, δ)-JTS. Then the triple system
is a δ-LTS with respect to the new product

[xyz] =< xyz > −δ < yxz > . (13)

In the next section 5 subsection we study the case of an (ε, δ)-FKTS, but we
give first two examples which are not (ε, δ)-JTS as it follows.
Proposition 3.2 Let (U,< xyz >) be a triple system with < xyz >=<
y, z > x and < x, y >= −ε < y, x >. Then this triple system is an (ε, δ)-
FKTS.
Proposition 3.3 ([16], [18]) Let U be a balanced (1, 1)-FKTS satisfying
<< xxx >, x >≡ 0 (identically) and < x, y > is nondegenerate. Then U has
a triple product defined by

< xyz >=
1

2
(< y, x > z+ < y, z > x+ < x, z > y). (14)

On the other hand, note that the balanced (1, 1)-FKTS induced from
an exceptional Jordan algebra is closely related to the 56 dimensional meta
symplectic geometry due to H. Freudenthal ([13], [15], [16] and the earlier
references therein). Also the correspondence of a quaternionic symmetric
space and the balanced (1,1) FKTS has been studied in ([5]).

4 Symmetric spaces associated with (ε, δ)Jordan

triple systems

This article (section) means that the symmetric space in sense of Prof. Wolf-
gang Bertram [Lecture Note in Math. ”The geometry of Jordan and Lie
structures” Springer, vol.1754 (2000)]. In his book, the following is described;
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a) the category of germs of symmetric space with invariant almost com-
plex structure is equivalent to the category of Lie triple systems with invariant
complex structure,

b) the category of germs of symmetric space with invariant polarizations
is equivalent to the category of Lie triple system with invariant polarization.

Hence from these results, it seems that it is important to construct a
Lie triple system from a Jordan triple system (abbreviated JTS). Therefore
we construct δ-Lie triple systems associated with a (ε,−ε)-JTS of more a
general case (when εδ = −1).

From now on, let V be a (ε, δ)-JTS with ε = −δ, that is, εδ = −1 and Ŵ
be a subset in the δ-LTS W = T (ε, δ) satisfying

Ŵ := Ŵ+ ∪ Ŵ−, where Ŵ+ :=
{(

x

x

)∣∣∣∣x ∈ V
}
, Ŵ− :=

{(
x

−x

)∣∣∣∣x ∈ V
}
.

Then we set J =

(
i 0
0 −i

)
, i =

√
−1, and we get JW+ = W−, JW− = W+.

From a special case of section one, for δ- LTS W with K(x, y) ≡ 0, we
have [ (

x1

x2

)(
y1
y2

)(
z1
z2

) ]
=

(
(L(x1, y2)− δL(y1, x2))z1
(εL(y2, x1)− εδL(x2, y1))z2

)
.

Thus for Ŵ+ and Ŵ− respectively, we obtain[ (
x
x

)(
y
y

)(
z
z

) ]
=

(
L(x, y)z − δL(y, x)z
εL(y, x)z − εδL(x, y)z

)
∈ Ŵ+,

[ (
x
−x

)(
y
−y

)(
z
−z

) ]
=

(
−L(x, y)z + δL(y, x)z
εL(y, x)z − εδL(x, y)z

)
∈ Ŵ−.

Also, we have [Ŵ−Ŵ−Ŵ+] ⊂ Ŵ+ and [Ŵ+Ŵ+Ŵ−] ⊂ Ŵ− etc.
Here we define for X, Y, Z ∈ Ŵ+ or X, Y, Z ∈ Ŵ−,

R(X, Y )Z = −[X,Y, Z] = −[[X, Y ], Z],

T (X,Y )Z = T (X,Y, Z) = −1

2
(R(X,Y )Z − JR(X, J−1Y )Z).

Hence, for example T (X, Y )Z =

(
−L(x, y)z
L(x, y)z

)
for any X, Y, Z ∈ Ŵ−.

Theorem 4.1. Under the above assumption and
√
−1 ∈ Φ (base field),

then we have,
i) Ŵ+ and Ŵ− are a δ-LTS with respect the product [XY Z],
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ii) Ŵ+ and Ŵ− are a (ε,−ε)-JTS with respect to the product T (X, Y, Z),
iii) Ŵ is twisted ([JXY Z] = −[XJY Z]) and almost complex with J ,
iv) N(X, Y ) is vanished, where N(X, Y ) := [JX, JY ]+ J2[X,Y ] −J [JX, Y ]

−J [X, JY ], (Nijenhuis operator),
Note that JT (X,Y, Z) = T (JX, Y, Z) = −T (X, JY, Z) hold forX,Y, Z ∈

Ŵ±, i.e., this is hermite in the sense of W. Bertram.
Remark Note that there is no the addition on Ŵ+ + Ŵ−, but there is the
multiplication [XY Z] on Ŵ and the addition on Ŵ+ or Ŵ−.

Similar if J =

(
0 i
−i 0

)
. Then we have Ŵ is twisted and polarized, i.e.,

J2 = Id on Ŵ .

If J =

(
i 0
0 i

)
, then it is straight with T (X, Y ) = 0,

if J =

(
0 1
1 0

)
, then it is straight with T (X, Y ) = 0 i.e., [JXY Z] =

[XJY Z].
Thus we note that ”there are the concept of invariant (J [XY Z] = [XY JZ]),

automorphism and derivation on Ŵ± ”.

If J =

(
i 0
0 −i

)
=⇒ N(X, Y ) = 0 (identically zero),

if J =

(
0 i
−i 0

)
=⇒ N(X, Y ) ̸= 0,

if J =

(
i 0
0 −i

)
=⇒ auto, but J =

(
0 1
−1 0

)
is not auto,

if J =

(
0 i
−i 0

)
=⇒ auto, but J =

(
1 0
0 −1

)
is not auto.

Sumarizing these results, for the structure J of Ŵ we have the table as
follows, (ε = −1, δ = 1)

almost complex polarized

twisted auto

(
i 0
0 −i

)
(type I)

(
0 i
−i 0

)

twisted anti-auto

(
0 1
−1 0

)
(type II)

(
1 0
0 −1

)

straight

(
0 i
i 0

)
or

(
i 0
0 i

) (
0 1
1 0

)
or

(
−1 0
0 −1

)
T (X, Y ) ≡ 0 T (X,Y ) ≡ 0

where the anti-automorphism is denoted by [JXJY JZ] = −J [XY Z] on Ŵ .
Note that twisted and invariant =⇒ derivation.
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5 Examples of Lie (super)algebras associated

with (ε, δ) Freudenthal-Kantor triple sys-

tems and B3 type Lie algebra

5.1 Examples of simple Lie superalgebra

Example a) C(n+ 1) type is of dimension dimC(n+ 1) = 2n2 + 5n+ 1.
Let U be the set of matricesM(1, 2n; Φ). Then, by Example 3.2, it follows

that the triple product

L(x, y)z =< xyz >:=< x, y > z+ < y, z > x− < z, x > y

such that the bilinear form fulfills < x, y >= − < y, x >, is a (1,−1)-JTS,
since K(x, y) ≡ 0 (identically). Furthermore, the standard embedding Lie
superalgebra is 3-graded and of C(n + 1) type. For the extended Dynkin
diagram, we obtain

L−1 ⊕ L0 ⊕ L1 :=
{(

L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ
}
span

⊕
{(

e

f

)}
span

∼=

⊗ α1 α2 α3 αn αn+1

∥ > ◦ − ◦ − −−−− ◦ <= ◦
⊗ α0

= C(n+ 1) type (α1 ⊗ deleted).

Also, we obtain

L0 :=
{(

L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ
}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ <= ◦
= Cn ⊕ ΦId (α1 ⊗ and α0 ⊗ deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of
C(n+ 1) type by deleting α1 ⊗ and α0 ⊗.
Example b) B(n, 1) and D(n, 1) type are of dimension dimB(n, 1) = 2n2+
5n+ 5 and dimD(n, 1) = 2n2 + 3n+ 3, respectively.

Let U be the set of matrices M(1, l; Φ). Then, by straihtfoward calcula-
tions, it follows that the triple product

L(x, y)z =< xyz >:=
1

2
(< x, y > z− < y, z > x+ < z, x > y)
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such that the bilinear form fulfills < x, y >=< y, x > is a (−1,−1)-FKTS.
Furthermore, the standard embedding Lie superalgebra is 5-graded and of
B(n, 1) type if l = 2n + 1, or of D(n, 1) type if l = 2n. For the extended
Dynkin diagram, we obtain from the results of § 1 the following.

For the case of B(n, 1) type we have

L−2 ⊕ L0 ⊕ L2 := D(T (−1,−1), T (−1,−1)) ={(
L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)∣∣∣∣ ε = −1 = δ
}
span

∼=

α0 α1 α2 αn αn+1

◦ => ⊗− ◦ −−−−− ◦ => ◦

= A1 ⊕Bn type (α1 ⊗ deleted).

Also, we obtain

L0 :=
{(

L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = −1 = δ
}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ => ◦

= Bn ⊕ ΦId (α1 ⊗ and α0 ◦ deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of
B(n, 1) type by deleting α1 ⊗ and α0 ◦.

Similarly, for the case of D(n, 1) type we have L−2 ⊕ L0 ⊕ L2
∼= A1 ⊕

Dn, L0
∼= Dn ⊕ΦId. We note that this triple system is balanced and with a

complex structure of type II since K(x, y) =< x, y > Id = L(x, y) + L(y, x)
(c.f. [32]).

In final of this section we note that the case of balanced is discussed in
([18], [28]). On the other hand, for the construction of simple exceptional Lie
algebras G2, F4, E6, E7, E8, refer to ([16], [18], [21]). Also, for the construc-
tion of simple Lie superalgebras G(3), F (4), D(2, 1, α), P (n), Q(n), H(n),
S(n) and W (n), refer to ([22], [25], [27]). Of course, these construction are
created from the concept of triple systems without using systems of roots.
Thus we can construct symmetric superspaces from anti-Lie triple systems
as well to the cases of symmetric spaces.
Remark Summarizing, we have the imaging methods;

bilinear forms → triple products → symmetric (super)spaces
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5.2 Constructions of B3-type Lie algebra

In this subsection, we will consider the constructions of simple B3-type Lie
algebra associated with several triple systems (the case of ε = −1 and δ = 1),
more easily. That is, we will give several examples; (c) the case of a JTS
(i.e., (−1, 1)-FKTS with K(x, y) ≡ 0), (d) the case of a GJTS of 2nd order
(i.e., (−1, 1)-FKTS with dim{K(x, y)}span = 1), (e) the case of a GJTS of
2nd order (i.e, (−1, 1)-FKTS with dim{K(x, y)}span = 3), (f) the case of a
derivation induced from a JTS (i.e., a subalgebra of B4-type).
Example c) We study the case of g−1 = U = Mat(1, 5; Φ). Hereafter in this
subsection, as a reason of traditional notation, we often would like to denote
by gi instead of Li, (i = 0,±1,±2) and by {xyz} instead of < xyz >.

In this case, g−1 is a JTS with respect to the product

{xyz} = xtyz + ytzx− ztxy, ∀ x, y, z ∈ g−1

where tx denotes the transpose matrix of x.
By straightforward calculations, the standard embedding Lie algebra L(U) =

g can be shown to be a 3-graded B3-type Lie algebra with g = g−1 ⊕ g0 ⊕ g1
and a LTS T (U) = g−1 ⊕ g1. Thus, we have

g0 = Der U ⊕ Anti−Der U ∼= B2 ⊕ ΦH, where H =

(
Id 0
0 −Id

)
.

Here in view of the relations [S(x, y), L(a, b)] = L(S(x, y)a, b)+ L(a, S(x, y)b),
and [A(x, y), L(a, b)] = L(A(x, y)a, b)−L(a,A(x, y)b) for all L(a, b) ∈ End U ,
when ε = −1, δ = 1, we use the following notations;

Der U := {L(x, y)− L(y, x)}span,

Anti−Der U := {L(x, y) + L(y, x)}span,

g0 =
{(

L(x, y) 0

0 − L(y, x)

)}
span

= {S(x, y) + A(x, y)
}
span

where S(x, y) := L(x, y) − L(y, x) ∈ Der U, A(x, y) := L(x, y) + L(y, x)
∈ Anti−Der U.
Example d) Second, we study the case of g−1 = U = Mat(2, 3; Φ). In this
case, g−1 is a GJTS of 2nd order (i.e., (−1, 1)-FKTS) with dim {K(x, y)}span
= 1 with respect to the product

{xyz} = xtyz + ztyx− ztxy, ∀ x, y, z ∈ g−1.

By straightforward calculations, it can be shown that the standard em-
bedding Lie algebra L(U) = g is a 5-graded B3-type Lie algebra with g =
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g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and dim g−2 = dim g2 = dim {K(x, y)}span = 1.
Thus, we have

g0 = Der U ⊕ Anti−Der U ∼= A1 ⊕ A1 ⊕ ΦH, where H =

(
Id 0
0 −Id

)
.

Furthermore, we obtain a LTS T (U) of dim T (U) = dim (g−1 ⊕ g1) = 12,

Der(g−1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A1 ⊕ A1 ⊕ A1
∼= Der T (U).

Also, in this case, we note that T (U) = L(U)/Der T (U) = g/(g−2⊕g0⊕g2)(=
g−1 ⊕ g1) is the tangent space of a quaternion symmetric space of dimension
12, since T (U) is a Lie triple system associated with g−1.
Example e) Third, we study the case of g−1 = U = Mat(1, 3; Φ). In this
case, g−1 is a GJTS of 2nd order (i.e., (−1, 1)-FKTS) with respect to the
product

{xyz} = xtyz + ztyx− ytxz,K(x, y)z = {xzy} − {yzx}, ∀ x, y, z ∈ g−1.

By straightforward calculations, the standard embedding Lie algebra L(U) =
g can be shown to be a 5-graded B3-type Lie algebra with g = g−2 ⊕ · · · ⊕ g2
and dim g−2 = dim g2 = 3. Thus, we have

g0 = Der U ⊕Anti−Der U ∼= A2⊕ΦH, g−2 = {K(x, y)}span = Alt(3, 3; Φ).

Furthermore, we obtain a LTS T (U) of dim T (U) = dim (g−1 ⊕ g1) = 6,

Der(g−1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A3
∼= Der T (U).

This case g−2 = {K(x, y)}span = k has the structure of a JTS (cf. section 2).
Remark Note that the cases (a) and (b) (resp. (e)) are δ = −1 (resp.
δ = 1).
Remark For the root system ∆ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 +
α3, α1 + α2 + 2α3, α2 + 2α3, α1 + 2α2 + 2α3} and the highest root −ρ =
{α1 + 2α2 + 2α3} of the simple Lie algebra B3, we note that the case of (c)
means g−1 = {α1, α1+α2, α1+α2+α3, α1+α2+2α3, α1+2α2+2α3}, g2 = 0,
and the case of (d) means g−1 = {α2, α1 + α2, α2 + α3, α1 + α2 + α3, α1 +
α2 + 2α3, α2 + 2α3}, g−2 = {α1 + 2α2 + 2α3}, and the case of (e) means
{α3, α2 +α3, α1 +α2 +α3}, g−2 = {α2 +2α3, α1 +α2 +2α3, α1 +2α2 +2α3}.
Example f) Finally, we study the case of g−1 = U = Mat(1, 7; Φ). In this
case, g−1 is a JTS (i.e, (−1, 1)-FKTS with K(x, y) ≡ 0) with respect to the
product

{xyz} = xtyz + ytzx− ztxy, ∀ x, y, z ∈ g−1.
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By straightforward calculations, the standard embedding Lie algebra L(U) =
g can be shown to be a 3-graded B4-type Lie algebra with g = g−1 ⊕ g0 ⊕ g1
and dim g−2 = dim g2 = 0. Thus, we have

g0 = Der U ⊕ Anti−Der U ∼= B3 ⊕ ΦH,

Der U = {L(x, y)− L(y, x)}span = Alt(7, 7; Φ) ∼= B3

Anti−Der U = {L(x, y) + L(y, x)}span ∼= ΦH.

This case is obtained from Der U such that U = Mat(1, 7; Φ) with the JTS
structure and so this derivation Der U is a subalgebra of the B4 -type Lie
algebra associated with g−1 = U = Mat(1, 7; Φ).

6 A generalization case of (ε, δ)JTS

Let V be a (ε, δ)-FKTS and J =

(
i 0
0 −i

)
, i =

√
−1. This concept is

a generalization of (ε, δ)-JTS in section 4. Then we set Ŵ := Ŵ+ ∪ Ŵ−
satisfying

Ŵ+ =
{(

x
x

) ∣∣∣∣x ∈ V
}
, Ŵ− =

{(
x
−x

) ∣∣∣∣x ∈ V
}
. Hence Ŵ ⊂ W.

Theorem 6.1 For the above Ŵ and εδ = −1,
√
−1 ∈ Φ, we have

i) Ŵ± is a δ-LTS with respect the product [XY Z] for any X, Y, Z ∈ Ŵ±,
ii) T (X,Y, Z) = −1

2
(R(X,Y )Z−JR(X, J−1Y )Z) is a (ε, δ)-FKTS, where

R(X, Y )Z = −[XY Z], i.e., (V, L(x, y)z) ↔ (Ŵ±, T (X,Y, Z)),
iv) N(X,Y ) is vanished.
Indeed from the relation (10) in section one, for example, for Ŵ−,[ (

x
−x

)(
y
−y

)(
z
−z

) ]
=

(
−L(x, y)z + δL(y, x)z − δK(x, y)z
εL(y, x)z − εδL(x, y)z − εK(x, y)z

)
,

[XY Z] ∈ Ŵ− and JT (X, Y, Z) ∈ Ŵ+ for any X, Y, Z ∈ Ŵ−, we obtain the
reuslts.
Remark. This generalized concept means that there is a symmetric (su-
per)space associated with the (ε, δ)-FKTS, as same methods in section 4.
However the details (type I and II) will be discussed in forthcoming paper.

7 Concluding Remarks

In this section, we give several references of mathematical physics in our
works.
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We note that there are applications toward the Yang-Baxter equations as-
sociated with triple systems ([26], [50]) and also toward the field theory
associated with Hermitian triple systems ([61], [62]).

8 Appendix (history from a certain personal

viewpoint)

For a Jordan river, we describe as follows:
This brief history (with respect to nonassociative algebras) is a story from
author’s personal aspect (judgement). It seems that triple systems (ternary
algebras) have first been appeared from Prof. N. Jacobson and continued by
Profs. O. Loos, K. Meyberg and E. Neher of students of Prof. M. Koecher
in Germany, also have certain triple systems associated with the geometry
of 56 dimensional due to Prof. Freudenthal have been studied by Prof. J.
Faulkner (resp. K. Meyberg) of the student of Prof. N. Jacobson in U.S.A
(resp. Germany).

On the other hand, there is a history;
H. Freudenthal −− >K. Yamaguti or I. L. Kantor −− > Author (N.

Kamiya) or S. Okubo−− > D. Mondoc (but these arrows are no students),
however, Dr. Mondoc is only a student of Prof. Kantor.
Profs. O. Loos and E. Neher on the student of Prof. M. Koecher in Germany
are working in Jordan triple systems and Jordan pairs. Profs. Kantor, S.
Okubo and author(N. Kamiya) are studying in their generalizations, for ex-
ample, refer to N. Kamiya and S. Okubo ”Representation of (α, β, γ) triple
systems,”, Linear and Multilinear Algebras, 58 no.5-6 (2010) 617-643. This
history is a story whithout concept of root systems and Cartan matrix in Lie
algebras, in particular, is a study for triple systems.

Note that there are a lot of mathematician in nonassociative algebras
related with Lie algebras, but a little groups in triple systems or Jordan
algebras. For example, Profs. E. Zelmanov, K. McCrimmon, B. Allison, V.
Kac, I. Shestakov, H. Petersson, M. Racine, H. Asano, I. Satake, A. Elduque,
C. Martinez, S. Okubo and author, may be, only a few. Furthermore in
addition, the book ”A Taste of Jordan Algebras” (Springer, 2003) written
by Prof. K. McCrimmon of a student in N. Jacobson is described about a
history of the Jordan river. It here emphasize that this historical survey of
certain Jordan algebras at the end of the 20th century and the beginning of
21th century is my (author) aspect (viewpoint).

In final comments, for a generalization of numbers,

R → C → H → O(octonion) → H3(O)(Jordan algebra of 27 dim) →
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M(H3(O))(metasymplectic geometry of 56 dim) →
T(H3(O))(symmetric space of 112 dim) →
E8(exceptional Lie algebra of 248 dim),

it seems that there are several group’s researchers tradition with respect to
these fields.
For algebraic structures of nonassociative subject (AMS classification 17) re-
lated with geometry, we may describe as follows, for example (in my opinion),
Jordan algebras researchers (E. Artin origin),
Lie algebras researchers (N. Jacobson origin).
In summarizing, we have the following diagrams (a generalization of com-

plex and quaternionic numbers):

octonion, pseudo octonion algebras and triple systems =⇒

Jordan algebras +Lie (super)algebras +symmetric composition algebras

=⇒mathematical algebras
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