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1. Preface

1.1. Remark on continuum for heat theory and fluid dynamics.
1 Duhamel [5] comments on the continuum and Poisson’s paper [21] :

We explain afterward how he do with Mr. Poisson obtain the same equa-
tion with Navier has made known in 1821, with talking the molecular ac-
tions, and in considering the corps as continue. This method inspecting
the molecular actions is originally due to Laplace, who has deduced from
this a nice theory of capillary action. Mr. Navier has obtained afterward
the nice idea to deduce the theory of elastic solid ; however, both of the
mathematicians have supposed the molecules of adjacent corps, and Pois-
son is the first of coincidence with calculations with the physical structures.
In addition to, although the hypotheses of continuum theory have been ac-
tually so inexact, however, have played big roles in the science. In the roles,
have played, the theories by Mr. Laplace have welcomed by the researchers.
This observation on the molecular activities, in the bulk of special problems,
above all, in theory of the elastic bodies, it has the very countless merits
to have to sweep out the all special hypotheses. Mr. Poisson emphasizes
the merit of this method ; we will reproduce textually this passage from his
Mémoire. [5, pp.98-99] (trans. and italics mine.)

We would like to point out Poisson’ sloughs in his final works in life :

1. He proposes the cause of rise/fall of capillary surface is due to the variation of
density. Today’s explanation is due to surface tension. (Part 1.)

2. Another equation of fluid dynamics, which is the original of the Navier Stokes
equations. (Part 2.)

3. He conjectures the proof on the exact differential will be defect. (Part 2.)
4. The difference between Lagrange’s series and the Fourier Series. (Part 2.)
5. The celestial mechanics in conformity to the mathematical physics. (Part 2.)
6. Another equation of heat different from Fourier. (Part 3.)

In the table 1, Poisson’s second books [24, 25] and third book [26] seem to be contradict
in the order of publishing year on describing title pages, (Poisson says the second book is
[26]), however, he explains as follows :

Date: 2018/12/23.
1Siméon Denis Poisson : Born 21/June/1781 at Pithiviers, dead 25/April/1840 at Sceaux, Poisson

enters l’Ecole Polytechnique in 1798 and there, will make career as professor. His works are numerous
(almost 400 published) and amount specially to applied mathematics and to the physics. (HP of fdp :
Fédération Denis Poisson).
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This Theorie mathématiques de la chaleur, (Mathematical theory of heat)
will form the second part of Un Traité de Physique mathématiques, 2 (A
Study of Mathematical Physics), where I propose to consider successively,
without hesitation for any order preventing the progress, the diverse ques-
tions of the physics to which I will apply the analysis. The primary part of
this Traité is the Nouvelle théorie de l’Action capillaire, the (New Theorie

of the Capillary Action), published in 1831. [26, p.6]. 3

Consequently, he doesn’t hesitate for ’any order’ preventing the progress, where, we think,
he seems to intends to slough from the old-fashoned order in the wide meaning, because
he struggles for the truth in rivalry relations in his life. So we use our title from this
phrase. 4 5

Table 1. The three books consisted of A Study of Mathematical Physics.

1 2 3

name and
bibliography

New theory of
Capillary Action
1831 [23]

Study of Mechanics
1833 [24, 25]

Analytical Theory
of Heat
1835 [26]

1 pages+figures 326+1
[24] : 696+4, [25] : 782+3
total : 1478+7

543+1

2347+9

2
rivalry &
preceding
studies

Laplace 1805 [12],
Gauss 1830 [8]

Langarnge 1788 [10],
Laplace 1798-05 [11]

Fourier 1822 [6]

3
newness
&
uniqueness

• rising by density
variation
• adaptation to
continuum

• mathematical principles
of mechanics
• analysis of exact
differential
• Lagrange’s summation
& Fourier’s series
• uptodate astronomy

based on this general
hypothesis of a molecular
radiation. (cf. § 7.)

2(⇓) There doesn’t exist any book entitled this name. He published also Traité de Mécanique, in 1811.
cf. [19], however, this is neither identical with [19] in respect to the title, nor the publishing date.

3(⇓) cf. [23].
4’slough’ means the molting of a cicada which comes out his shell or a human’s break-

ing with scientific conventions. Poisson says in [26, p.6] as follows : This Theorie mathma-
tiques de la chaleur, (Mathematical theory of heat) will form the second part of Un Trait de

Physique mathmatiques, (A Study of Mathematical Physics), where I propose to consider successively,
without hesitation for any order preventing the progress, the diverse questions of the physics to which I

will apply the analysis. The primary part of this Trait is the Nouvelle thorie de l’Action capillaire, the
(New Theorie of the Capillary Action), published in 1831.

5To establish a time line of these contributors, we list for easy reference the year of their birth and death:
Kepler(1571-1630), Newton(1642-1727), Daniel Bernoulli(1700-82), Euler(1707-83), d’Alembert(1717-
83), Lagrange(1736-1813), Laplace(1749-1827), Legendre (1752-1833), Fourier(1768-1830), Gauss(1777-
1855), Poisson(1781-1840), Bessel(1784-1846), Navier(1785-1836), Cauchy(1789-1857), Dirichlet(1805-
59), Stokes(1819-1903), Riemann(1826-66).
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2. Part 1. New Theory of the Capillary Action.

2.1. The general conception of capillary action. 6

Poisson discuss the attractive and repulsive forces in the hydrostatics, in the hydrody-
namics, and in the heat theory, citing his paper [21]. cf. [23, p.30]. Poisson mentions p
as p = ̟ + ∆, he defines f(r) the measure of the molecular action in the distance r and
related with the unit of the volume.

Hence, to satisfy the conditions of preceding article, the sum which p

represents can’t be reduced to an integral, and it must be equal with two
terms ̟ and ∆ of its complete value. Although the smallness of ε, the
latter term can effectively become comparable and same measure than the
former, when the two attractive and repulsive forces, which dues to f(r),
are mutually, extremely great in comparison to the difference. We show
this point the development and the examples which I have given in my
memoir on the general equation of the equilibrium and the motion of the
solid elastic corps and fluids (cf. [21]). [23, p.30] 7

In the other hand, Poisson cites [21] in his book on the capillary action [23], discussing
the same theme of the development and example of the two attractive and repulsive
forces. Although deducing into the same results of the fundamental formula respectively
as follows, Poisson asserts his own discussion on the attractive and repulsive forces, whose
method comes from the essential conception among the hydrodynamics, hydrostatics and
heat theory. Followings coincide respectively in expression of the formulae.
Laplace [12, p.19] (R and R′ are the radii of the priciple curvatures, respectively) :

1

R
+

1

R′
=

(1 + q2) dp

dx
− pq

(

dp

dy
+ dq

dx

)

+ (1 + p2) dq

dy

(1 + p2 + q2)
3

2

, p =
dz

dx
, q =

dz

dy
(1)

Gauss [8, p.64-65] (R and R′ are the same with Laplace) :

dξ

dx
+
dη

dy
= −ζ3

[d2z

dx2

{

1 +
(dz

dy

)2}

− 2d2z

dx.dy
.
dz

dx
.
dz

dy
+
d2z

dy2

{

1 +
(dz

dx

)2}]

=
1

R
+

1

R′
,

where, ζ3 =
[

1 +
(dz

dx

)2
+

(dz

dy

)2
]

−
3

2

. (2)

Poisson [23, p.61, p.99] (λ and λ′ are the radii of the priciple curvatures, respectively) :

1

λ
+

1

λ′
=

[

1 +
(

dz
dy

)2]
d2z
dx2 − 2 dz

dx
dz
dy

d2z
dxdy

+
[

1 +
(

dz
dx

)2]
d2z
dy2

[

1 +
(

dz
dx

)2

+
(

dz
dy

)2] 3

2

(3)

These fundamental formulae are conventionally deduced after discussing personally the
molecular activity between the attractive and repulsive forces, even if it were differed with
each other. Poisson’s one is based on the essential concept dues to [21].

Their form is the same with that of the equations of the Mécanique céleste (Celestial
mechanics) ; however, the expressions in definite integrals of two special constants which
they include are very different, so that their numerical values would be equally if, instead
of determining it with the experience, we would be capable to calculate them directly
owing to their analytic expressions, this one, which would be necessary that we would

6(⇓) The original title is : Nouvelle Théorie de l’Action Capillaire. [23]
7For example, cf. [21, pp. 98-99, p.134, pp.170-1]
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know the law of the action of the tube on the liquid and of liquid on itself.
With the rules known of the calculation of the variation, we determine the surface

unknown of the liquid which makes this sum a minimum, and as we see, we find at
once, the general equation of this surface and the equation particular to its contour,
this one, which is the characteristic merit of the method which Mr. Gauss has followed.
But, this great prodigious mathematician having started from the similarly given physics
with Laplace, and having no more consider the variation of the density at the extremity
of the liquid, which he has regarded, in contrary, as incompressible in all the parts,
the objections which is structured against the theory of Laplace applies equally to his,
which isn’t different with the other from the manner to formulate the equations of the
equilibrium.

General consequence which we will make from our theory, it is here that the phenomena
of the capillarity are due to the molecular action, modified, not only with the curvature
of the surface, as Laplace has discussed, but also with the particular state of the liquids
at their extremities.

Table 2. The three papers/a book on the capillary action

1 2 3

Name and
bibliography

Laplace(1749-827)
1798-05 [11]
1805 [12],
et.al.

Gauss(1777-855)
1830 [8]

Poisson(1781-840)
1831 [23]

1 language, pages French, 78 Latin, 49 French, 302

2 restrictions
incompressible
fluid

according to Laplace’ physics,
incompressible fluid

3

composition
of
capillary
forces

• attraction
• repulsion
(after 1819)

• gravity
• the attractive force
• for these forces, we will
designate
the ≺ characteristic F ≻
such that the inverse-
directional distance
is used.

• universal attraction
• molecular attraction
• calorific repulsion
(§ 129)

4
mathematical
newness

• two special constants
• equation of surface
using principal radii
of curvature
• adaptation to
continuum

• introduction of variation
problem from Lagrange (§ 18)
• analysis from geometry
(§ 20)
• comparison of efficiency
of methods between
analysis and geometry
(§ 25)
• reduction from sextuplex
integral to quadruplex integral
(§ 16)
• principle of virtual velocity

• adaptation in both theory
and practice to continuum
• analysis of fluidity(§ 62)
• the difference between
fluid and solid corps.(§ 131)
• principle of heat theory (§ 129)
• calculation in aid of elliptic
function by Legendre
• point of arête vive
(§ 112 and ff.)
• point of inflection
(§ 54 and ff.).
• reduction from multiplex
integrals such as quitiplex (§ 17),
sextuplex (§ 18)
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2.2. The modeling and proof of rise/fall in liquid.
We discuss the problem of capillary action by Poisson (1831) from the history of math-

ematical physics, or, the modeling and calculation of the rise/fall of the liquid in the
neighborhood of wall.

He supposes the mutual action of attraction between the molecules, ρ2ϕ(r)ωω′dsds′

with the function ϕ(r) of distance r between two molecules. He separates the domain of
the liquid into four parts C, C ′, D and D′, of which the two are near the wall : C locates
over C ′, and other two, in the liquid, D locates over D′. He seeks the unknown ∆ from
the 2R′ −R ≡ ∆, where, R and R′ the actions from the liquid and from the wall. Under
the condition of constant density of liquid,

R = ρ2

∫ ∫ ∫ ∫ ∫ ∫

ϕ(r)
z + z′

r
(1 − ku)(1 + k′u′)dzdz′dudu′dsds′,

in putting r2 = x2 + (u+ u′)2 + (z + z′)2 and putting k = k′ = 1,

q ≡ 2ρ2

∫ ∫ ∫ ∫ ∫

ϕ(r)
z + z′

r
dzdz′dudu′dx, q′ ≡ 2ρρ′

∫ ∫ ∫ ∫ ∫

ϕ′(r)
z + z′

r
dzdz′dudu′dx,

where, q and q′ the quantities, ρ and ρ′ densities of two material, dz, dz′, du, du′, dx,
each elements of the distances. Using c the contour and R =

∫

qds = cq, and integrating
the function, he calculates the quantities of action Q, Q′, P defined Q in D, Q′ in D′

and P in C ′, under the condition of equilibrium Q + Q′ + P = 0 in D, and, he gets
P = −2cq, Q′ = R = cq, Q = ∆ = cq. (On the Q, he shows another direct method.)

By his hypothesis, it turns finally q = q′, ρ = ρ′, because of the constant density,
namely, it means that the materials are equal between the tube and liquid. From this
contradiction, he concludes the rise/fall dues to the abrupt change of variation in density
of liquid near the wall.

If we calculate Q without using the equilibrium in D, then we get as follows.

Q = ρ2

∫ ∫ ∫ ∫ ∫ ∫

ϕ(r)
z + z′

r
dzdz′dudu′dxds,

r2 = x2 + (u+ u′)2 + (z − z′)2.

in conserving all the notations of the number cited, and integrating in respect to zand z′,
from the plane GF to its tangential plane.

Z =

∫ y+θu

0

∫ y−θu

0

ϕ(r)
z′ − z

r
dzdz′.

from the above, we conclude
∫ ∫ ∫

Zdudu′dx = 2

∫

∞

0

Φ(r′)rdr

∫

∞

0

∫

∞

0

dudζ

(1 + ζ2)
[

1 + u2(1 + ζ2)
] ,

namely,
∫ ∫ ∫

Zdudu′dx =
πθ√

1 + θ2

∫

∞

0

rΦ′(r)dr,

in effectuating the integration relative to u, and next, that which responds to ζ .
Owing to this reduction of the integral in respect to z, z′, u, u′, x, and in putting for θ

its value − cotω, the expression of Q will turn into

Q = −πρ2

∫

∞

0

rΦ′(r)dr.

∫

cosωds. (4)
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In integrating by parts, it turns into
∫

∞

0

rΦ′(r)dr =
1

2

∫

∞

0

r3Φ(r)dr =
1

8

∫

∞

0

r4ϕ(r)dr ;

from the above, we conclude with

q =
πρ2

8

∫

∞

0

r4ϕ(r)dr,

from (4), we get :

Q = −q
∫

cosωds. Q = −cq cosω,

where,
∫

ds = c.

3. Part 2. Study of Mechanics.

The material is all this one, which can affect our sense of a certain manner. The corps

are the portion of material limited in all sense, and which have, in consequence, a form

and a volume determined. We call mass of a corps, the quantity of material of which it is
composed.

A material point is a corps infinitely small in all the dimensions ; so that the length of
all the line composed in it interior, is infinitely small, namely, less than all length which
we can assign. We can regard a corps of finite dimensions, as a assemble of an infinity of
material points and its mass as the sum of all their masses infinitely small.

3.1. Another equation of fluid dynamics, which is the original of the Navier Stokes
equations.

(7-9)P f























ρ(X − d2x
dt2

) = d̟
dx

+ β(d2u
dx2 + d2u

dy2 + d2u
dz2 ),

ρ(Y − d2y
dt2

) = d̟
dy

+ β(d2v
dx2 + d2v

dy2 + d2v
dz2 ),

ρ(Z − d2z
dt2

) = d̟
dz

+ β(d2w
dx2 + d2w

dy2 + d2w
dz2 )

where ̟ = p + α
3 (K + k)(du

dx
+ dv

dy
+ dw

dz
),

(5)

⇒∗



















ρ(Du
Dt

− X) + dp
dx

+ α(K + k)
(

d2u
dx2 + d2u

dy2 + d2u
dz2

)

+ 1
3α(K + k) d

dx

(

du
dx

+ dv
dy

+ dw
dz

)

= 0,

ρ(Dv
Dt

− Y ) + dp
dy

+ α(K + k)
(

d2v
dx2 + d2v

dy2 + d2v
dz2

)

+ 1
3α(K + k) d

dy

(

du
dx

+ dv
dy

+ dw
dz

)

= 0,

ρ(Dw
Dt

− Z) + dp
dz

+ α(K + k)
(

d2w
dx2 + d2w

dy2 + d2w
dz2

)

+ 1
3α(K + k) d

dz

(

du
dx

+ dv
dy

+ dw
dz

)

= 0,

(⇓) Here, α(K+k) is the constant to the tensor function with the main axis ( the normal
stress ) of Laplacian. 1

3
α(K+k) corresponds to the coefficient of grad.div term. In today’s

NS equations, the ratio of coefficient attached to the term of the tensor function with the
main axis ( the normal stress ) of Laplacian to that of grad div : coefficient of tensor

coefficient of grad div
= 3,

like Poisson deduced in (7-9)P f and Stokes’ (12)S through the tensor by Saint-Venant. By
Prandtl [28, p.259] in 1934, we had have to wait by the time, when including this ratio of
two coefficients, as what is called the NS equations were expressed in fluid equation. (⇑)
Stokes pointed out the coincidence with Poisson using the correspondence:

̟ = p+ α
3
(K + k)

(

du
dx

+ dv
dy

+ dw
dz

)

which then gives ∇̟ = ∇p+ β

3
∇(∇ ·u). Stokes also

commented:
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The same equations have also been obtained by Navier in the case of
an incompressible fluid (Mém. de l’Académie, t. VI. p.389 ) 8, but his
principles differ from mine still more than do Poisson’s. [29, p.77, footnote]

He further stated:

Observing that α(K + k) ≡ β, this value of ̟ reduces Poisson’s equation
(7-9)P f (=(5) in our renumbering ) to the equation (12)S of this paper.

3.2. Slough from Lagrange to Fourier.
In 1807, Fourier proposes his first paper on the heat theory to French Academy, howeevr

Lagrange (the then one of the commision, 9 or chief judges of this arena) rejects this paper,
and Poisson obeys to his teacher (Lagrange), and objects that Fourier’s deduction dues to
Lagrange’s originality. But Today, Poisson acknowledges Fourier’s originality. We show
Poisson’s introduction in [24] the comparison and differences between Lagrange (§ 325)
and Fourier (§ 328). cf. [14, p.47]

§ 325. (Lagrange’s formula.) We go now to demonstrate the formula of Lagrange,
cited previously.

For this, let consider the quantity 1−h2

1−2h cos θ+h2 , which is a rational fraction with respect
to h, and in which θ designate a real angle. Its development following the powers of h will
be 1 + 2h cos θ + 2h2 cos 2θ + 2h3 cos 3θ + 2h4 cos 4θ + etc. ; this one, which we can easily
verify ; because if we multiply this infinite series with the denominator 1 − 2h cos θ + h2

of the fraction, we find again its numerator, in observing that we have 2 cosnθ cos θ =
cos(n + 1)θ + cos(n − 1)θ, whatever is the number n. If h is less than the unit, making
abstraction of the sign, this series will be convergent, and the fraction will be rigorously
equal to its development prolonged to the infinity ; by cause of

1 − 2h cos θ + h2 = (1 − h)2 + 4h sin2 1

2
θ,

10 we will have hence, in this hypothesis,

1 − h2

(1 − h)2 + 4h sin2 1
2
θ

= 1 + 2
∑

hn cos nθ ;

the sum
∑

extending to all the values of the entire number n, from n = 1 up to n = ∞.
11 Whatever are the function f(θ) and the real constant α, we will have hence also

∫ π

0

(1 − h2)f(θ)dθ

(1 − h)2 + 4h sin2 1
2
(θ − α)

=

∫ π

0

f(θ)dθ + 2
∑

hn

∫ π

0

f(θ) cosn(θ − α)dθ.

Let g be a quantity positive and infinitely small ; this equation will subsist more in
putting h = 1 − g, because it holds for all value of h less than the unit. For all values

8(⇓) cf. Navier [15].
9(⇓) The members of commision in 1807 are Lagrange, Laplace, Monge and Lacroix. cf. [3, 4, 9].
10(⇓) The right hand side of the expression (6) is reduced as follows :

(1 − h)2 + 4h sin2 1

2
θ = 1 + h2 − 2h + 4h sin2 1

2
θ = 1 + h2 − 2h

(

1 − 2 sin2 1

2
θ
)

= 1 + h2 − 2h cos θ

.
11(⇓) This paragraph is expressed by Poisson’s phylosophy.
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finite of n, we will have hn = (1 − g)n = 1 ; for the infinite values of this exponent, hn

will be able to differ from the unit, however, in integrating by parts,

∫ π

0

f(θ) cosn(θ − α)dθ =
1

n
f(θ) sinn(θ − α) − 1

n

∫

df(θ)

dθ
sin n(θ − α) ;

so that if f(θ) never turn to be infinite, between the limits θ = 0 and θ = π, nor for
these limits, the integral

∫ π

0
f(θ) cosn(θ − α)dθ which multiply hm, will evaporate for

n = ∞ ; from the above it results that we will be always able to replace h2 with the
unit under the sign

∑

. At the numerator of the fraction composed under the sign f ,
we will have1 − h2 = 2g, in neglecting g2 with respect to 2g ; in the second term of the
denominator, we will be able to put the unit instead of h or 1−g ; and, with this manner,
we will have

(1.2)3.3.3
1

2

∫ π

0

f(θ)dθ +
∑

∫ π

0

f(θ) cosn(θ − α)dθ

=

∫ π

0

gf(θ)dθ

g2 + 4 sin2 1
2
(θ − α)

. (6)

The coefficient of dθ under this last integral is infinitely small. except for the values of θ
infinitely few different from α, which make its denominator infinitely small ; this integral
is hence infinitely small or null, such that the difference θ − α is a finite quantity ; this
one will hold in all the extent of the integration, when we will suppose α < 0, or α > π

; hence all the times when the constant α will fall beyond the limits zero and π, we will
have the equation

(2)3.3.3
1

2

∫ π

0

f(θ)dθ +
∑

∫ π

0

f(θ) cosn(θ − α)dθ = 0. (7)

If, on the contrary, we have α > 0 and < π, there will be the values of θ which differ
infinitely few from α ; in putting hence θ = α + u, dθ = du, the integral of which it
acts will evaporate more for the finite value of u, however, no more for the values infinitely
small of this variable, positive or negative ; in the regard of this one, we will have

f(θ) = f(α), sin
1

2
(θ − α) =

1

2
u ; (8)

in consequence, the right hand-side of the equation (6) turns into

f(α)

∫

g du

g2 + u2
,

12 when α fall between zero and π. Consequently, this integral being null for all value
of u which never be infinitely small, we can now extend, without altering the value, to
the certain values of u, positive or negative, and take it, if we wish, from u = −∞ up to

12(⇓) From the last expression in the (8), we get

4 sin2 1

2
(θ − α) = u2

.
8



u = ∞ : we will have hence
∫

∞

−∞

g du

g2+u2 = π, 13 and finally

(3)3.3.3
1

2

∫ π

0

f(θ)dθ +
∑

∫ π

0

f(θ) cosn(θ − α)dθ = πf(α). (9)

This reasoning will be convenient also at the case where α coincides with one of two
limits zero or π ; however, we have α = 0 we will be able to give to u only the positive
values, and only of the negative values, if we have α = π, in order that in these two cases,
the variable θ (whom) we have made equal to α + u, doesn’t separate from the limits of
the integration. From this manner, the integral relative to u will find reduce to the half
of its value, or to 1

2
π ; and if we represent with β and γ the values of f(α) which respond

to α = 0 and α = π, it will result from the above

(4)3.3.3

{

1
2

∫ π

0
f(θ)dθ +

∑
∫ π

0
f(θ) cosnθdθ = 1

2
πβ,

1
2

∫ π

0
f(θ)dθ +

∑

(−1)n
∫ π

0
f(θ) cosnθdθ = 1

2
πγ.

(10)

Now, put θ ≡ πx′

a
, dθ = πdx′

a
; and let be also

(

x′

a

)

≡ ϕ(x′). The quantity x being

positive and less than the constant a, putting instead of α, −πx
a

in the equation (7)
(=(2)3.3.3) and πx

a
in the equation (9) (=(3)3.3.3); in observing that the limits relative to

x′ will be zero and a, we will have

(5)3.3.3

{

1
2

∫ a

0
ϕ(x′)dx′ + 1

a

∑
∫ a

0
ϕ(x′)dx′ cos nπ(x′+x)

a
dx′ = 0,

1
2

∫ a

0
ϕ(x′)dx′ + 1

a

∑
∫ a

0
ϕ(x′)dx′ cos nπ(x′

−x)
a

dx′ = ϕ(x) ;
(11)

and in subtracting these two equations in both sides, it turns into

2

a

∑

(

∫ a

0

ϕ(x′) sin
nπx′

a
dx′

)

sin
nπx

a
= ϕ(x) ; (12)

14

§ 326. This formula represents the values of the function ϕ(x), for all the values of
the variables x, which are positive and less than a, and similarly, for x = 0 and x = a,
when ϕ(x) will be null for these extreme values. It is important to observe that the series
indicated with

∑

, will always finish with being convergent ; because for the very great
value of n, the integral relative to x′ will turn into a very small quantity, which will di-
minish more and more along with that n will augment, and which will be completely null
for n = ∞, as we have seen above by the method of the integration by parts. This remark
is necessary and sufficient to justify the adaption that we will make with the precedent
formula.

The different formulae with which we can therefore represent in series of periodical
quantities, always convergent, from portions of arbitrary functions continuous or discon-
tinuous, are deduced from the equations (11) (=(5)3.3.3), which we are going to establish.

13(⇓)

∫

∞

0

a dx

a2 + x2
=











π

2
a > 0,

0 0,

−π

2
a < 0.

cf. Peirce [16, p.67].
14(⇓) The expression (12) is reduced from the formula :

cosα − cosβ = −2 sin
1

2

(

α + β
)

· sin 1

2

(

α − β
)

.

9



I will content to give here two of these formulae, which we will be useful in the following ;
for greater development on this material, I will refer to my memoir on the integral calculus
15 which makes party of the Journal de l’École Polytechnique, and where we will find a
complete theory of this genre of transformation.

After having jointed the equations (11) (=(5)3.3.3) and subtracted the primary from
the second, I put there 2l instead of a, next, x + l and x′ + l instead of x and x′, and
successively ϕ(x) and ϕ(x′) instead of ϕ(x+ l) and ϕ(x′ +′ l) ; the limits of the integrals
relative to x′ turn ±l, and these equations are replaces with as follows :

ϕ(x) =
1

2l

∫ l

−l

ϕ(x′)dx′ +
1

l

∑

(

∫ l

−l

ϕ(x′) cos
nπ(x′ + l)

2l
dx′

)

cos
nπ(x+ l)

2l
,

ϕ(x) =
1

l

∑

(

∫ l

−l

ϕ(x′) sin
nπ(x′ + l)

2l
dx′

)

sin
nπ(x+ l)

2l
.

Let separate each sum
∑

into two others, of which the one relates to the even number n,
and the other at the odd number n. For this, were i an entire number certain, and put
successively n = 2i n = 2i− 1 ; we will have

cos
2iπ(x+ l)

2l
= (−1)i cos

iπx

l
, sin

2iπ(x+ l)

2l
= (−1)i sin

iπx

l
,

cos
(2i− 1)π(x+ l)

2l
= (−1)i sin

(2i− 1)πx

2l
, sin

(2i− 1)π(x+ l)

2l
= −(−1)i cos

(2i− 1)πx

2l
,

and similarly, for the sines and cosines composed under the signs
∫

; in consequence, we
will have

(6)3.3.3







































ϕ(x) = 1
2l

∫ l

−l
ϕ(x′)dx′ + 1

l

∑

(

∫ l

−l
ϕ(x′) cos iπx′

l
dx′

)

cos iπx
l
,

+1
l

∑

(

∫ l

−l
ϕ(x′) sin (2i−1)πx′

2l
dx′

)

sin (2i−1)πx

2l
,

ϕ(x) = 1
l

∑

(

∫ l

−l
ϕ(x′) sin iπx′)

l
dx′

)

sin iπx
l

+1
l

∑

(

∫ l

−l
ϕ(x′) cos (2i−1)πx′

2l
dx′

)

cos (2i−1)πx)
2l

.

(13)

the sum
∑

extend to all the values of i, from i = 1 up to i = ∞. These equations will
hold for all the values of x which will be composed between the limits ±l.

Posed thus, if the function ϕ(x) is such that we would have ϕ(−x) = −ϕ(x), it will
result from the above
∫ l

−l

ϕ(x′)dx′ = 0,

∫ l

−l

ϕ(x′) cos
iπx′

l
dx′ = 0,

∫ l

−l

ϕ(x′) cos
(2i− 1)πx′

2l
dx′ = 0,

and, in addition,

2

∫ l

−l

2ϕ(x′) sin
iπx′)

l
dx′ = 2

∫ l

0

2ϕ(x′) sin
iπx′

l
dx′,

∫ l

−l

ϕ(x′) sin
(2i− 1)πx′

2l
dx′ = 2

∫ l

0

ϕ(x′) sin
(2i− 1)πx′

2l
dx′,

15(⇓) Fr. Memoires sur le Calcul integral.
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by the suitable method, the second equation of (13) (=(6)3.3.3) will coincides with the
formula (14) (=(a)3.3.3),

16 in changing a into l ; and the primary is reduced to

(7)3.3.3 ϕ(x) =
2

l

∑

(

∫ l

0

ϕ(x′) sin
(2i− 1)πx′

2l
dx′

)

sin
(2i− 1)πx

2l
. (15)

If, on the contrary, the function ϕ(x) is such that we would have ϕ(−x) = ϕ(x), we will
have

∫ l

−l

ϕ(x′) sin
(2i− 1)πx′

2l
dx′ = 0,

∫ l

−l

ϕ(x′) sin
iπx′)

l
dx′ = 0 ;

and the other integrals can be extended only from x = 0 up to x = l, in doubling
the resultants. The second equation of (13) (=(6)3.3.3) will make in the equation (15)
(=(7)3.3.3), in putting l− x instead of x, and ϕ(x) instead of ϕ(l− x). The first equation
of (13) (=(6)3.3.3) will turn into

(8)3.3.3 ϕ(x) =
1

l

∑

∫ l

0

ϕ(x′)dx′ +
2

l

∑

(

∫ l

0

ϕ(x′) cos
iπx′

l
dx′

)

cos
iπx

l
. (16)

These formulae (15) (=(7)3.3.3) and (16) (=(8)3.3.3) represent the values of ϕ(x), from
x = 0 up to x = l ; those which is deduced, in differentiating them with respect to x,

explain, in the same interval, the values of dϕ(x)
dx

. The formula (15) (=(7)3.3.3) supposes

ϕ(x) = 0 for x = 0, and dϕ(x)
dx

= 0 when x = l ; the formula (16) (=(8)3.3.3) requires that

we would have dϕ(x)
dx

= 0 for x = 0 and for x = l. When these conditions aren’t satisfied,
these formulae or their differentials doesn’t hold for the extreme values of x.

§ 328.

• If we put 2a instead of a, and successively x′ + a and x+ a instead of x and x′, in
the second equation of (11) (=(5)3.3.3),

• and if we put ϕ(a+ x) = F (x),

we will have

F (x) =
1

4a

∫ a

−a

F (x′)dx′ +
1

2a

∑

∫ a

−a

F (x′)dx′ cos
nπ(x′ − x)

2a
dx′,

for all the values of x composed between ±a. In putting π
a

= ε, nπ
2a

= nε = u, where,
this equation will be able to be described hence :

F (x) =
1

2π

∫ a

−a

F (x′)dx′ +
1

π

∑

[

∫ a

−a

F (x′)dx′ cosu(x′ − x)dx′
]

ε ;

where, u being a multiple with ε, and the sum
∑

extending to all the value of u, from
u = ε up to u = ∞. Consequently, if the constant a turn to be infinite, the difference ε of
the consecutive values with u will turn to be infinitely small, and the sum

∑

will change
into a integral taken from u = ε or u = 0, up to u = ∞. In putting hence a = ∞ and

16(⇓)

(a)3.3.3 dT + γω
(

X
dx

ds
+ Y

dy

ds
+ Z

dz

ds

)

= 0 ; (14)

11



ε = du, putting the sign
∫

instead of
∑

, in suppressing the primary term of the precedent
formula, we will have

F (x) =
1

π

∫

∞

0

[

∫

∞

−∞

F (x′) cosu(x′ − x)dx′
]

du.

Fourier has given the first this important formula, which extends to all the values real,
positive or negative, of the variable x, and invites, as the preceding, from which it is
deduced, to a certain function F (x), continue or discontinue.

3.3. The conjecture of defect of Proof on Exact differential.
Poisson [22] comes to a close17 in appending his opinion about the proof of exact

differential in the last pages of [21, pp.173-4]. His conjucture is based on the preceding
analysis in [20, pp.382-3].

The proof of the conservation in time and space of an exact differential was discussed
by Lagrange, Cauchy, Stokes, and others. The herein-called “Poisson conjecture” in
1831, cited in the Introduction as one of our main motivations for this study, It had its
beginnings with the incomplete proof by Lagrange [10]. However, thereafter, Cauchy [2]
had presented a proof as early as 1815, while Power [27] and Stokes [29] had tried by
other methods.

To date Cauchy’s proof is still considered to be the best. Poisson concludes the proof
is defect, and even the equation made of tenscendentals satisfy with exact differential at
the original time of movement, the equations satisfy no more with it during all the time.

Poisson says : consequently, this one doesn’t hold at the regard of the expressions
of u, v, w, in series of exponentials and of sines or cosines, which the exponents and
the arcs are proportional with t ; and the demonstration being in defect, the proposition
is also able to be, and it is effectively in defect, in certain cases which I have found the
examples. In each problem, the expressions of u, v, w, which it behaves, satisfy to with the
equations relative to the mass and to the surface of the fluid in motion ; in determining
suitably the coefficients of exponentials and of the sines or cosines, they represent the
initial state and given with all the points of the fluid ; and if the series which results
are additionally convergent, this one suffices in order that they enclose the solution of
the question, although one of their particular characters weren’t always satisfied with the
equations which is deduced from that of the motion, with of new differentiations. [25,
a.654]

3.4. The celestial mechanics in conformity to the mathematical physics.
His top title of his careers in his books is member of institute, of Bureau of Longitude,

etc. His astronomical theories is backed on this post. We see the today’s scientific bases
such as knowledges in his books [24, 25] are constructed in the nineteen’s century. He says
his role for himself is not a physician but a mathematical physician. The mathematical
physics is the new learning coming in his days, and he acknowledges as his few fellows in
mathematical physician and a rival : Fourier. Poisson’s standing point in astronomy is
not on the orbitary study but on the mathematical physics of the earth science, which is
one of two astronomical schools.

17This note’s accepted date is signed as Lu : 2/mars/1829.
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4. Part 3. Mathematical Theory of the Heat.

We cite only § 44, § 47-§ 49, and § 50 (concludion of heat equation).
§ 44. (Introduction of the heat in motion in all the corps.)

There is always the heat in motion in all the corps, even when of all their points are
invariable,

• if each point should have a particular temperature,
• or, even if they should have all a same temperature.

However, the expression motion of the heat is taken here, in the another sense ; it signifies
the variation of temperature which holds from an instant to the other in a corps which
is heated or is cooled ; and the velocity of this motion, in each point of the corps, is the
primary differential coefficient of the temperature in respect to the time.

I will call A the corps solid or liquid, homogeneous or heterogeneous, in which we are
going to consider the motion of the heat. Let

• M a certain point of A,
• and m a party of this corps, of insensible grade (no. 7),
• and take the point M .

At the end of a certain time t,

• designate with x, y, z, the three rectangular coordinates of M ,
• with v the volume of m,
• and with ρ its density,

so that we have m = vρ.. Let also, at the same instant, u the temperature and ℧
18 the

velocity of motion of the heat which responds to the point M .
The quantity u will be a function of t, x, y, z, dependent on an equation in the partial

differences with respect to these four variables, which it will be the pressing problem
to form. If A is a corps solid, and which we make neglect its small dilatation, positive
or negative, products with the variations of u relative to time, the coordinates x, y, z,
according to independent of t, and we will have simply, ℧ = du

dt
.

• If in contrast, we have regard to small displacement of the point M caused from
these dilaration,

• or also, if A is a fluid in which the inequality of temperature, or all other cause,
hold to the motions of its molecules,

then the coordinates x, y, z, will be the function of t ; and then we will have with the
known rules of the differentiation of functions made of functions, 19

(1)PS4 ℧ =
du

dt
+
dx

dt

du

dx
+
dy

dt

du

dy
+
dz

dt

du

dz
; (17)

where, expression in which dx
dt
, dy

dt
, dz

dt
, will be the components of the velocities at the

point M , parallel to the axes x, y, z.
§ 47. Of the point M as center and a radius equal to the linear unit, we describe

a spherical surface ; were ds the differential element of this surface, to which gets, the
radius of which the direction is that of MM ′, we will have dv′ = r2 dr ds ; and according

18(⇓) We use ℧, because, in origin, Poisson uses the vertical type of ∝ like the opened shape in upper
of the numerical letter 8, however, this exact type isn’t in our LaTex font system.

19(⇓) sic. The function is repeated.
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to the value of the sum
∑

, the equation (18) 20 will turn out

(4)PS4 c
du

dt
=

∫∫

R (u′ − u) dr ds ; (19)

We put here, for abridgment, du
dt

, instead of ℧ ; however, we will remember that this
differential coefficient needs to be taken with relation to t and to all this that depend ;
so that it needs to replace du

dt
with the formula (17), when the coordinates x, y, z, of the

point M will vary with the time.
The limit relative to r of the integral contains in this equation (19) won’t be the same,

according to the distance of the pointM to the surface of A will surpass l or will be shorter
than this small segment. In this chapter we will suppose that this were the primary case
which holds ; the integral relative to r will come to be hence taken from r = 0 to r = l,
in all directions around M ; we will be able hence to describe the equation (19) under the
form

(5)PS4 c
du

dt
=

∫ l

0

[

∫

R (u′ − u) ds
]

dr ; (20)

where, the integral in respect to ds will come to be extended to all the elements ds from the
spherical surface, and with the reduction in series, we will obtain easily the approximate
value.
§ 48. For these things, I designate with α, β, γ, the angles which the segment MM ′

makes with the parallels to the axes x, y, z, traced through the point M . Because of
MM ′ = r, then it will result

x′ − x = r cos α, y′ − y = r cos β, z′ − z = r cos γ ; (21)

and, according to the theory of Taylor, we will have

u′ − u =
du

dx
r cos α +

du

dy
r cos β +

du

dz
r cos γ

+
1

2

d2u

dx2
r2 cos2 α +

1

2

d2u

dy2
r2 cos2 β +

1

2

d2u

dz2
r2 cos2 γ

+
d2u

dx dy
r2 cos α cos β +

d2u

dx dz
r2 cos α cos γ +

d2u

dy dz
r2 cos β cos γ

etc. (22)

If we develop similarly R in accordance with the power and the products of u′ − u, x′ −
x, y′ − y, z′ − z, we will have also

R = V +
(dR

du′

)

(u′ − u) +
(dR

dx′

)

(x′ − x) +
(dR

dy′

)

(y′ − y) +
(dR

dz′

)

(z′ − z) + etc. ;

where, the parentheses indicating here that it needs to put u′ = u, x′ = x, y′ = y, z′ = z

according to the differentiation which supposes r invariable, and V designating this which
comes at the same time from the function Φ of the (no. 45), so that we have

V = Φ (r, u, u, x, y, z, x, y, z). (23)

20(⇓)

(3)PS4 c ℧ =
∑ R

r2
(u′ − u) v′, (18)
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By means of these developments of R and of u′ − u, this one of product
∫

R (u′ − u) will

be composed of terms of this form H rn cosi α cosi′ β cosi′′ γ ; where, H designating a
coefficient independent of α, β, γ, and the exponential i, i′, i′′, being the number entire
and positive which won’t be zeros all the three to the times, and of which the exponent
n is the sum i+ i′ + i′′. Hence in having regard to the limits of the integral relative to ds,
we will have

∫

cosi α cosi′ β cosi′′ γ ds = 0, here all times which the one of the three
numbers i, i′, i′′, will be odd ; for then this integral will be composed of the elements
which will be equal two by two and the contrary sign. When any of number i, i′, i′′, won’t
be odd, the integral won’t be zero ; the ordinary rules give the exact values, whatever
these three number were ; and with this manner, we will have

(6)PS4 R (u′ − u) = H2 r
2 +H4 r

4 +H6 r
6 + etc. ; (24)

where, H2, H4, H6, etc., being the differential function of known form, in any of which
the partial differences of u will be taken in respect to x, y, z, and are raised to the order
marked with its inferior index.
§ 49. (General equation of the motion of heat) In this hypothesis, we will stop the

development of R at the terms dependent on the square of r exclusively. By reason of the
system of R in respect to u and u′, x and x′, y and y′, z and z′, and of this one, which V
represents, we have evidently

(dR

du′

)

=
1

2

dV

du
,

(dR

dx′

)

=
1

2

dV

dx
,

(dR

dy′

)

=
1

2

dV

dy
,

(dR

dz′

)

=
1

2

dV

dz
;

then, it will result hence

R = V +
1

2

dV

du
(u′ − u) +

1

2

dV

dx
(x′ − x) +

1

2

dV

dy
(y′ − y) +

1

2

dV

dz
(z′ − z) ; (25)

and with this value jointed to that of u′ − u, 21 we will conclude

H2 =
1

2

[

V
d2u

dx2
+

(dV

du

du

dx
+

dV

dx

)du

dx

]

∫

cos2 α ds +
1

2

[

V
d2u

dy2
+

(dV

du

du

dy
+

dV

dy

)du

dy

]

∫

cos2 β ds

+
1

2

[

V
d2u

dz2
+

(dV

du

du

dz
+

dV

dz

)du

dz

]

∫

cos2 γ ds,

21(⇓) cf. the expression (22), which includes the expressions (21). The expression (25) turns into :

R = V +
1

2

dV

du
(u′ − u) +

1

2

dV

dx
r cos α +

1

2

dV

dy
r cos β +

1

2

dV

dz
r cos γ,

then we get :

R(u′ − u) = H2 r2

=
r2

2
V

(d2u

dx2
cos2 α +

d2u

dy2
cos2 β +

d2u

dz2
cos2 γ

)

+
r

2

[dV

du

(du

dx
cos α +

du

dy
cos β +

du

dz
cos γ

)

+
(dV

dx
cos α +

dV

dy
cos β +

dV

dz
cos γ

)]

× r
(du

dx
cos α +

du

dy
cos β +

du

dz
cos γ

)

Finally, we get :

H2 =
1

2

[

V
d2u

dx2
+

(dV

du

du

dx
+

dV

dx

)du

dx

]

∫

cos2 α ds +
1

2

[

V
d2u

dy2
+

(dV

du

du

dy
+

dV

dy

)du

dy

]

∫

cos2 β ds

+
1

2

[

V
d2u

dz2
+

(dV

du

du

dz
+

dV

dz

)du

dz

]

∫

cos2 γ ds

15



or more simply

H2 =
1

2

[

V
d2u

dx2
+
dV

dx

du

dx

]

∫

cos2 α ds+
1

2

[

V
d2u

dy2
+
dV

dy

du

dy

]

∫

cos2 β ds

+
1

2

[

V
d2u

dz2
+
dV

dz

du

dz

]

∫

cos2 γ ds ;

the partial differences 22 of V with respect to x, y, z, being taken in considering u as a
function of these three coordinates, and without varying r.

We have additionally
∫

cos2 α ds =

∫

cos2 β ds =

∫

cos2 γ ds.

Moreover, if we call ψ the angle which makes the plane of the segment MM ′ and of a
parallel to the axis of x traced through the point M , with a fixed plane traced through
this parallel, we will have

ds = sin α dα dψ ;

and the integral relative to ds will come to be extended to all the spherical surfaces, to
which this element belongs, then it will result

∫

cos2 α ds =

∫ π

0

cos2 α sin α dα

∫ 2π

0

dψ =
4π

3
.

23 Hence, in reducing the value of
∫

R (u′ − u) at the primary term H2 r
2 of the series

(24), the equation (20) will come to be

c
du

dt
=

2π

3

(d2u

dx2

∫ l

0

V r2 dr +
du

dx

∫ l

0

dV

dx
r2 dr

)

+
2π

3

(d2u

dy2

∫ l

0

V r2 dr +
du

dy

∫ l

0

dV

dy
r2 dr

)

+
2π

3

(d2u

dz2

∫ l

0

V r2 dr +
du

dz

∫ l

0

dV

dz
r2 dr

)

. (26)

The function V being zero for all the values of r longer than l, we will be able to now
extend the integral relative to r beyond this limit, and if we want to be until r = ∞. If
we put also

2π

3

∫

∞

0

V r2 dr ≡ k, (27)

where, k will be a function of u, x, y, z, and we will have

2π

3

∫

∞

0

dV

dx
r2 dr =

dk

dx
,

2π

3

∫

∞

0

dV

dy
r2 dr =

dk

dy
,

2π

3

∫

∞

0

dV

dz
r2 dr =

dk

dz
;

in consequence, the general equation of the motion of the heat will come to be finally

22(⇓) id.
23(⇓) According to [16, p.41, no.277],

∫

cosm x sin xdx = −cosm+1 x

m + 1
.
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(7)PS4 c
du

dt
=
d.k du

dx

dx
+
d.k du

dy

dy
+
d.k du

dz

dz
. (28)

When all the points of A get to a stationary state, we will have du
dt

= 0, and then it will
result

d.k du
dx

dx
+
d.k du

dy

dy
+
d.k du

dz

dz
= 0,

for the equation relative to this stationary state. 24

§50. (The conclusion of the heat equation.)
The equation (28) coincides with one which I found in years ago in case of a hetero-

geneous corps 25, however, in supposing hence only that the quantity k depended on the
temperature u.

If A is a homogeneous corps,

• k will depend only on u,
• and the equation (28) will be changed as follows :

(8)PS4 c
du

dt
= k

(d2u

dx2
+
d2u

dy2
+
d2u

dz2

)

+
dk

du

(du2

dx2
+
du2

dy2
+
du2

dz2

)

. (30)

26 In supposing that this quantity k were independent of u, we could have the equation

(9)PS4 c
du

dt
= k

(d2u

dx2
+
d2u

dy2
+
d2u

dz2

)

, (31)

27 which we give it ordinarily, and which is reduced, in case of the stationary state, to an
equation independent of two quantities c and k, viz.,

d2u

dx2
+
d2u

dy2
+
d2u

dz2
= 0. (32)

28 After obtained the equation (31), in considering c and k as the constant quantities,
we could suppose

• that it will conserve the same form when these quantities will variable,
• that it will suffice to put here for k

c
a function given with u,

• and that the equation relative to the stationary state doesn’t receive any change.

24(⇓) The expression (26) is reduced into

c
du

dt
=

(d2u

dx2
k +

du

dx

dk

dx

)

+
(d2u

dy2
k +

du

dy

dk

dy

)

+
(d2u

dz2
k +

du

dz

dk

dz

)

(29)

25sic. Journal de l’École Polytechnique, 19e cahier, page 87. (⇓) Poisson [?], [25, p. 677].
26(⇓) Because of k = k(u), from each second terms in the right hand-side of the expression (29) is

reduced into
(du

dx

dk

dx

)

+
(du

dy

dk

dy

)

+
(du

dz

dk

dz

)

=
(du

dx

du

dx

dk

du

)

+
(du

dy

du

dy

dk

du

)

+
(du

dz

du

dz

dk

du

)

=
dk

du

(du2

dx2
+

du2

dy2
+

du2

dz2

)

27(⇓) The equation (31) means cdu

dt
= k∆u, where ∆ meaning the Laplacian.

28(⇓) This function u satisfying the equation (32) is called harmonic function. Poisson doesn’t mention
the harmonic function, however, Poincaré [17, p.237] calls it so.
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However, it is seen that these suppositions are never admissible ; the equation (31) and
here one which is deduced in case of du

dt
= 0, were never, in the same case of a homogeneous

corps, the exact equation of the motion of the heat and that of the stationary state ; and
the formula (30) shows that the independence of partial differences 29 of u of the second
order in respect to x, y, z, the true equations need also to contain the square of its
partial differences of the primary order. To have regard to displacement of points of
A, products with the dilatation and condensations due to variation of the temperature,
or from another cause, we will replace, as we mentioned above, du

dt
with the formula (??),

and the equation (28) will come to be

(10)PS4 c
(du

dt
+
du

dx

dx

dt
+
du

dy

dy

dt
+
du

dz

dz

dt

)

=
d.k du

dx

dx
+
d.k du

dy

dy
+
d.k du

dz

dz
. (33)

Here is this equation (33) which we will come to joint, for instance, to the ordinary
equations of the motion of liquids, to accomplish it, hence that I proposed already in my
Study of Mechanics 30 and in a preceding memoir. 31

In sum, Poisson’s [26] is extending his railroadline of analysis of heat motion on the
hypothesis based on the molecular radiation. This is the extending effort since the analysis
on fluid motion [21], and hydrostatics [23]. cf. [26, p.13]. This comes from the rivalry
to Navier and Fourier. Poisson ignores Navier as Arago [1] says, however, to Fourier,
Poisson refutes him in the several papers since the paper [18] on the abstract of Fourier’s
initial work in 1808. Poisson gets to coincide the equation of interior motion of heat with
Fourier’s as follows, though Poisson’s ((8)PS4) deducing method is different with Fourier’s
((1)PS11). (cf. [26, p.347])

5. Conclusions.

We think Poisson’s theories in many arenas are to be discussed. In nineteenth century,
under the confused situations in the then French Academy, he asserts in persisting for
truth, this evokes to his sympathy. We conclude as follows :

1. Poisson’ slough is not only from the publishing order of books 32 but also to
build the physical mathematics, from the order of old science and order of the
Academy of France, including Duhamel’s pointing-out [5] on the continuum, such
that Poisson’s works had the very countless merits to have to sweep out the all

special hypotheses.

2. It is worth to listening to Poisson’s allusion of the demonstrations of the exact
differential, for the example of logarithm.

29(⇓) The symbol of partial difference is not used. id.
30(⇓) Traité de Mécanique, op. cit. cf. Poisson [19], [24] and [25].
31(⇓) Poisson puts also the another heat equations such as in Chapter 6. entitled : Digression on the

integral of the partial differential equations. §76. [26, p.146], or Chapter 11. entitled : Distribution of the
heat in certain corps, and specially in a homogeneous sphere primitively heated with a certain manner.
§162. [26, p.347] :

(1)PS11

du

dt
= a2

(d2u

dx2
+

d2u

dy2
+

d2u

dz2

)

,
k

c
≡ a2, ⇒ du

dt
= a2∆u. (34)

where, u is the heat, k and c are the conductibility and the specific heat of the material. ∆ is the
Laplacian.

32(⇓) Poisson says [26] in the second book published in 1835 in his academic paradigm of Mathematical

physics, which is published after the mechanics : in 1833, [24, 25] cf. Table 1.
18



3. After Fourier’s paper 1807, Poisson changes his thinking to Lagrange’s expression
and to valuate finally the Fourier’s originality.

4. Another expressions of capillary action different from Laplace and Gauss are de-
duced in considering density.

5. Poisson shows radically different method of deduction of heat equation from Fourie,
based on a modern style on continuum, and induced to the same formulation with
Fourier.
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gelehrt Anzeigen, 1829, as above in “Werke V ”, 287-293.)
[9] I. Grattan-Guinness, Joseph Fourier 1768-1830, MIT., 1972.
[10] J.L.Lagrange, Méchanique analitique, Paris, 1788. ( Quatrième édition d’après la Troisième édition
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sementre 1893-1894, Georges Carré, Paris. → http://gallica.bnf.fr/ark:/12148/bpt6k5500702f
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