Theorema Egregium according to Gauss and Riemann
Makoto Ishibashi
81. Historical introduction

In 1977, when it was 150 years celebration of Gauss’s paper[G], on which
symposium took place in Europe (, see [D]). In Japan, explicit form of theo-
rema egregium due to Gauss was noted by Syoshichi Kobayashi (1932-2012),
and Ichirou Satake (1927-2014), respectively ( , see [K]y, [K]z, [S]).

In fact, Gauss was fifty years old in 1827, he published [G] in Latin, whose
main results as follows.

(i) Theorcma cgregium

(i) Theorema elegantissimun (i.e. the original form of Gauss-Bonnet the-
oreme )

ili) A generalization of Legendre formula in spherical trigonometry
g

After Riemann’s ” Habilitationsvorlesumg ” [R] in 1854, the following
four Italian mathematicians contributed greatly to the development of mod-
ern differential geometry ;

Elwin Bruno Christoffel (1829-1900), Curbastro Gregorio Ricci (1853-
1925), Luigi Bianchi (1856-1928), Tullio Levi-Civita (1873-1941).

At the present days, ” Theorema egregium ” can be proved by using ideas
either of Riemann or of Cartan, as yet many books on differential geometry
do not treat seriously the original proof due to Gauss himself. Though the
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explicit calculation by Gauss is extraordinary long, it seems to deserve to
review. He used neither matrices nor determinants (i.e. no linear algebra
), but his foremost sense for algebraic symmetry can be seen fully from his
each formula.

§2. Statcments of Gauss’s theorma cgregium and that of Ricmann’s

[GTE] Let ds? = Edp? + 2Fdpdq + Gdg?

be the first fundamental form of a surface in a three dimensional Eu-
clidean space with respect to parameters (p,q), and let k be its Gaussian
curvature. Then k can been expressed only by the first fundamental quanti-
tiesE,F, G, E)(= 0E/dp), E,, F, Fy, Gy, Gy, By, Fip, Gy as follows.

4 (E G- F?)?%k = —2(EG—F?)(Eq=2Fp+Gypp) + E(G2—2F,Go+ E,G,)
F ( E,Gy — B,Gp — 2B,F, + 4F,F, - 2F,G,) + C(E,G, — 2E, B, + E2).

... Formula itaque art. praec. sponte perducit ad egregium
Theorema. Si superficies curva in quamcunque aliam superficiem expli-
catur, mensura curvatur in singulis punctis invariata manet.

(( ... Thus the formula of the preceding article leads to itself to the

remarkable
Theorem. If a curved surface is developed upon any other surface what-
ever, the measure of curvature in cach point remains unchanged. ))

[RTE] Let S= (S, gS) be a submanifold of a Riemannian manifold M
= (M, g). Let R be the curvature of M, and Rg be the curvature of S.
Let 1 (X,Y)=VxY -VyY

be the second fundamental form, where V and V*
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denote the Levi;Civita connection of M and S, respectively.
Then we have(( R - Rs)(X,Y)Z,W >

=1 (X,2), II(Y,W))-(II(Y,Z) , TI(X,W)).

§3. Proof of [RTE]

Let TM — M, TS— S be tangent bundles, and let v(S) — S be normal bundle of S.
Since Vy X - VxY = [V, X] = Vo X — Vg(Y. one sees that
(Y, X) = VxY+[Y, X]~(VxY +[Y, X]) = II(X,Y)(i.e.I] is a symmetric form ).
It follows from X(Y,Z)=<VXY, Z>+<Y,VxZ >=
VXY, Z >+ <Y,VxZ > that
< Z,1I(X,Y) >=<II(X,Y),Z >=- <Y, I(X,Z) >= - <Y,II(Z,X) >
By similar way{(X, IL(Y,Z)= -@, (X, Yand{Y, 11(Z,X))= (X, II(Y,Z).

Hence we have(Z, II(X,Y))=(X, II(Y,Z))= Z, II(X,Y)). Therefore

{z, II(X,Y)>-—- 0 for arbitrary Z in C%(S; T'S)(i.e. II(X,Y) is normal to S at point in M ).
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Let £ be a section € C(S;v(S)), whichisnormalto S, then there uniquely exists
the Weingarten linear map (i.e. symmetric shape linear operator )

Ag : T,8 — T,8 such that < AcX,Y >=<§1I(X,Y)>.

Furthermore, there uniquely exists a connection
(on V(S))V‘l: C>®(S;TS) x C=(S;v(8S)) — C=(S;v(3))

such that Vx§+ A X =V x§( because, if Y is tangent to S, then
<Vx£,Y>+<A€X Y>=X <Y > =<, VxY >+ <€ 1I(X,)Y) >=
~<EVRY > -< £1I(X,Y) >+ <& 11(X,Y) >=0).
By the way, Vx(VyZ) Vx(VyZ)+II(X VyZ) = Vx(VyZ-I-II (Y. 2))+
I1(X, VyZ) VYV Z)+VRII(Y, 2)+11(X, VyZ)+II(X 1Y, Z)) =
VxVyd-i-Vx(II(Y Z))-11(X,11(Y, 4))+11(X VYZ)+11(X, 1Y, Z)) =
VxV'))/Z + Vx[[(y Z) A"(yz)X + II(X VyZ)

It follows from II([X,Y],Z) = V(x'y)Z—v[x‘y]Z that (R—Rs)(X.Y)Z =
R(X,Y)Z - Rs(X,Y)Z

=VxVyZ ~ VyVxZ -~ Vixn|Z — (VXVYZ - V9VEZ - V|21, 2)

= vk, Z)- Ay X+11(X, Ve2)-Vl (X, 2)+ A, nY=II(Y,V%Z)—
V[x y]Z + V[x y)Z

= (II(X, V)eZ)—II(Y, VgZ)—II([X, Y], Z)+V;1(II(Y, Z)—-VJII(X, Z)) (normal to S)

- (A X — Anx.z)Y )angent to 5)-

This formula is called the Gauss-Codazzi equation.
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For arbitrary vector fields (i.e. sections ) X,Y ,Z, Win C>®(S;TS), we obtain that

<(R=R)(X,Y)Z,W >=< —AnyzyX, W > + < Anyix.z2)Y, W >
=-<IIY,2),II(X,W) >+ < II(X,2),1I(Y,W) >.
This comnpleles our proof of [RTE] .Q.E.D.

§4. Tinplication from [RTE] to (GTE]

Recall that the first fundamental form I(X,Y) =(X, Y)(, where X, Y in
C>®(M;TM)) is actually inner products, which are patched by the metric g
of a Riemannian manifold (M, g).

In the case of [GTE], since dim M = 3>dim S = 2, dim ¢(S) =
1, we may wrile local coordinales (z;. x2) (= (p,q) ; paramelers in [GTE)),

and symbolically, we often write by g1 = F,g12 = g1 = F, 922 = G.

For the sake of brevity, write by 8; = 8/dz;(j = 1,2). For arbitrary X
= a1101 + andy, Y =001 + axnd in C> (S,TS) , stnce < 6,-,8,- >
= 6;;, and dim€ = 1, < §,§ >=1( for some £ in C(S;v(S))) we havelI(X,Y)
=< §TI(X,Y) > &,and < X, X >< VY)Y > - < X|Y >*= (anaxn —
012021)2-

Now write by k;; the components of A¢, then the Gaussian curvaturekof S
is equal lo d(it/‘e = k11k22 —k12k21.3i1u:c < AQX, X >= (I.:lzl k11+(1,11(121(k21+
k12) + a3, koo,
< AeX,Y >= app(ankn + eakn) + axn(enkiz + azks),
< AgY,Y >= ak ki + araaz(ka + ki2) + adokao, we have
<AX, X ><AY)Y > — < A XY >?
= (011022 - 012021)(011012"311’921 + (anax — amalz)kukzz — aypapkyikis +
a21012k3, — ana2k?, + anaaska ke — az1azzk12k22)-
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Since A¢ is a symmetric linear operator (i.e. k2 = ko ), we have
<AX, X >< AY)Y > — < A XY >?
= (anas2 — a12021)((anasz — az1812)ki1k2z — (an1a22 — az1012)k%,)
= (011022 - a12a21)2detA€ = (< X,X >< Y, Y>—-< X, Y >2)k.

On the other hand, using [RTE] onc sees that
{AX, X >< AY)Y > — < AX,Y >2=< £11(X,X) >< £ I11(Y,Y) >
- <& TI(X,Y) >?
=<<&II(X. X)>E<&TIY)Y)>E> — << & TI(X,)Y) > €, ,
<&LIX,)Y)>E>=<II(X,X),[IY,Y) > - < II(X,Y),II(X,Y) >
=< (R- Ry)(X,Y)X,Y >.

Thus we have proved that the Gaussian curvature k ( of S ) depends on
only the first fundamental form (i.e. [RTE] implies [GTE] ). Q.E.D.

§5. Proof of [GTE]

The key point of this section is to recover the Gauss's original idea with-
out using modern Riemannian differential geometry. First let us warm up
for calculations. The curvature of a curve C is a limit of ratio of
( difference of circle angles ) : ( length on C ) , which is well-known as 1-
dimensional case. After on the model of curves, Gauss inductively used anal-
ogous definition of curvature k of a surface S in three dimentional Euclidean
space as follows. At each point ( of S ) k can been defined as a limit of ratio
of (.arca on unit sphere ) : (arcaon S ). In fact, let (x,y), (x + dx, y + dy )s
(x + 0z, y+6y)be a triangular element on a curved sur face S, and let (X,Y),
(X+dX,Y+dY),(X+6X,Y +8Y) be the corresponding elements on unil sphere.

Then Gauss defined that k = ( dX 6Y —6XdY)/(dzdy—dxdy).Infact, it follows from
(a’)( Jx) [ Xx X\ [dx §x
Ay §Y ) ~
v %)z 7

that k = X.Y, — Yz X,, where subindex denoles partial derivalive.
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Since S is contained in a three dimensional Euclidean space, we are able
to write x = x(p,q), y = y(p,q), z = z(p,q) for two parameters p and q . Let
(a,b,c) = (X, Up 2)s (@', ' ¢) = (T4, Yy 2,), then

X a
Ay | = ¢ ¢ (;f’ﬁ)
A2 c c’ .

For a point on unit sphere ; X = X(x,y), Y = Y(x,y), Z = Z(x,y) , lct us
put as follows.

(tau) = ( Zm Zy)) (T, U: V) = (Z:rn Zrus Zyy),
A= ((bc‘ —cb')? + (ca* — ac*)? + (ab' — ba‘)2)1/ 2, then we have

dZ=tdx +udy,(X,Y,Z)=Abc' — cb',ca’ — ac', ab’ — ba')
= (14 +u?)"'"2(t,u,-1).

Since Z*(1 + 2 +u?) =1, X = —tZ,Y = —uZ, we have dX
= —Zdt - tdZ,dY = —Zdu — vwdZ,dZ = —Z3(tdt + udu).

Hence dX = - Z3(1 + u?)dt + Z3tudu, dY = Z3utdt — Z3(1 + t?)du. Since
T
'L;y:c Zry 3? » (Y Y )\a)(dY
—Z(+0)  FRU O\ /At
Zur - Eprrt) )\

wc¢ obtain that

Xe X,\ [-Erew) EEN\T U

i

4

i

T Y,} Zut  -Zwe))\ UV '

Therefore, k = Z8(1 + 12 +w?)(TV — U?) = 24TV - U?)
= (TV = U?)/(1 + 2 +u?)%
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Furthermore, let us write as follows.
( P: Q» R ) = ( Wx: Wys Wz)1 (P‘a Q:a R‘) = (szn Wyy; sz)1 (P“,Q“, R“)
= (Wyzy Wz, Way) for a function W = W(z,y, z). Then

AP PRGN fux

4= R" & Plaz

K g /D” /Q/ A%
fdW=Pdx+ Qdy+Rdz=0,then P +tR=Q +uR =0, be-

couse of dz = t dx + u dy . Using dt = d(-P/R) = (-RdP + PdR ) /
R? and dz = (- P/R)dz + (—Q/R)dy, one sees that

*

Rdt = (~R*P‘+2PRQ“~ P*R")dz+(PRP“+QRQ“~ PQR'~ R*R“)dy,

Rdu = (PRP“+ QRQ“ — PQR' — R?*R"dx + (~R2Q‘ + 2QRP* —
Q*R')dy,

R®Tdz + R*Udy = (- R?P* + 2PRQ“ — P2R')dz + (PRP* + QRQ" —
PQR: — R?R¥)dy,

R3Udz + R3Vdy = (PRP“+ QRQ“ — PQR’' — R?R%)dz + (—R?Q* +
2QRP* —~ @*R')dy.

Thus we conclude that

R3T = —-R*P‘ + 2PRQ* — P2R:,

R3U = PRP*“+ QRQ“ — PQR“ — R2R“,

R% = -R?Q' + 2QRP“ - Q*R".
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Since TV-U? = (1 + 2 + u?)%k = (1 + P?/R? + Q?/R?)?*k = (R* + P? +
Q?)%k/R%, we have (R? + P? + Q?)%k = (R®T)(R®V) — (RV)?

—_ P2(R¢Q:_ (P::)2)+Q2(P¢R(__(Q11)2)+R2(PcQ:_(Ru)2)+2QR(QuRu_
P:Pu) + QPR(P“R“ — Q“Q‘) + ZPQ(Q“P“ — R‘R“).

This formula was obtained in the former part of Gauss‘'s paper [G]. In
a case of W(x,yz) = W(x,y) -2 =0, then P = W;,Q = W,,R =W, =
~LP' = Wg, Q' = WyyaR‘ =W, = 0,P= Wyz =0,Q" = W, =
0, and R“ = W,,. Hence we have

(1+ W2+ W2k = W W,y —W2,. This is nothing but a formula due to G.Monge.

After that he had changed up to final objective as follows.

Let us recall Gauss‘s notations ;

o ’5/ ﬂ/ “\ % B G
T Zgp Ly Ly |,

(ABC)=(bc'-cb',ca'-ac',ab'-ba’).

Then A = (A2+B%*+C%)'/2,(A,B,C) = (XA, YA, ZA). It follows from (aX+
bY +cZ)dp+(a'X +bY +c'Z)dg = 0 that Adx+ Bdy+Cdz = (aXA+bY A+
cZA)dp+(a' XA+b'Y A+c'ZA)dg = 0. Hence tdx+udy = dZ = —A/Cdz—
B/Cdy implies that z, = |t = —A/C.Z, = u = —B/C. Since Cdp =
(ab* — ba')dp = b'adp + b'a‘dg — b'a‘dg — ba'dp = b'dx — a'dy, Cdg = —bdz +
ady, we have di = d(—-AJC) = —(1'2((/1,,(17) + Agdq)C — A(Cydp + quq)).
Hence

C¥dt = ((AG, — CA,) +b(C Ay — AC))dz —(a(AC, ~ CAy) +a(C A, ~
ACq))dy.

By using permutation of A and B , we obtain similar formula as follows.

C%du = ((BC, - CB,) +b(CB, - BC,))dz — (a(BC,~ CB,) +a(CB, -
BC,,))dy. :
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By the way, A, = 9(bc' — cb*)/0p = byc' + b(c"), — cb* = c(b'),
= C'Yp + b2y — cy,,,, bz, Aq = C'Ygp + b2gq — CYyy — b'2gp,

-t g e — ¢t = at e —
By =a'zy + cogp — azgp — Cikpp, By = a'2gp + agq — 02gq — 2y,

— I b b — b Y e I
Cp = bpp + aygp — birgp — @'y, Cq = VT + aygq — bygg — 'Yy

Therefore C3dt = (b‘A(b‘:c,,,, + aYgp — bZgp — a'ypp) — b (CYpp + bzgp —
Clap— l')‘zm,) +bC(CYgp+b2gg — CYgg — ' 2gp) —bA(V'Tgp+aygq —bE gy — a‘yq,,))dx -
(0t A(Y Ty + Ay — b — 0Ypp) — @*C(CYpp + b2y — CYgp = b 23) + aC(C i +
b2gg ~ CYigq — b'2gp) — GA(b'Tgp + GYgq — bTgg — a‘yq,,))dy.

Since di = Tdz + Udy,du = Udz + Vdy, one sees that C*T = z,,A(b")? +
y,,,,B(b 2 + 2,C(b')? — 22, Abb* — 2y, Bbb* — 22,,Cbb* + x,,Ab? + y,,Bb +
2eCV?, C3U = ~zp,Aa‘b — yppBa'b' —zppC’a‘b‘+xq,,A(ab‘ +ba') +ypB(ab' +
ba‘) + zgC(abt + ba‘) — ZgeAab — ygBab — z,4Cab, C3V = z,A(a')? +
Yo B(a')? + 2;,C(a')? — 2zgpAaa’ — 2y Baa' — 22,,Caa’ + 209Aa® + ypg Ba® +
29qCa?.

Therefore C(TV — U?) = C*T C*V — (C%U)? = ((Azpp + By,p +
Czpp)(AZgq + Bygg + Czyq) — (AZgp + Bygpy + Cz,p)?) C? implies that

k ( AJ+B‘+C'2)1 (AZpp+ Bypp+C2pp) (ATgg+ Bygg+Czgq) — (AZgp+
By + Czy)2.

Now write by
(EF'mm’m”__(aﬁ-c Q&’Z;,Z%:(g&
’ v |- ! pl A/
FGnnn)(d¥c % 4%
C U % 5 Zy

(D D’ D”)Z(A KC') pr -Z'% Z%g,

Y% G Ge

2 Ssp Zgy) -
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Then E G-F2 = A2+ B2+ C? = A and k(A%+ B?+C?)? = DD“~(D")2.

Recalling that ( C,c,c?) is orthogonal to ( A, b*C-¢ B,cB-bC)
and that (B,b,b') is orthogonal to (A, b* C - cB cB- bC) we know
that ( A2+ B2 + C?)z,, = (A(be — ¢b*) +a(bC ~ ¢ B) +a'(cB - b()));,,,,,
D(bc' —cb*)+m(b'C—c'B)+n(cB—bC) = AD+m(aG—a'F)+n(a'E—aF) =
AD + a(mG — nF) + a'(nFE — mF).

By similar way (i.c. (A,a) — (B,b),(A,a) — (C,c)), we know that
( A% + B% + C?)y,p = BD + b(mG — nF) + b'(nE — mF),

( A%+ B2+ C?)z, = CD + ¢(mG — nF) + ¢'(nE — mF).

Hence ( A%+ B+ C?)(TppTeq + Ypplga T+ ZppZaq) = (AZgq+ BYgq+Czgg) D+

(aZyy + byyy + €24g) (MG — nF) + (a'Tyq + b'Ygq + € 249)(RE — mF)
=D*D+Gm*m-F(m“n+n“m)+En“n.

It follows from A BC
det | 2 #¢ = A+B+C#)
e’ § ¢’
that x# C 70/
%ﬂ =|a ¥ C) m’
Zgp Z ¢\
In fact,
A BC\ (A af-uF WE-GF
(P+BC*) | 2 8 C =g gi-¢F FE-FF
& FC) N\ cb-CF CE-CF
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Hence ( A% + B? + C?)(x2, + 42, + 22,)

- (AD +(aG-a‘F)m‘+(a‘E-aF)n‘?x,,,,+(BD‘+(bG—
V' F)m‘+ (b'E — bF)n‘)yq,, + (C'D‘ + (G - c'F)m‘+ (¢E - cF)n‘)zq,,

= (D')*+G(m')* = 2Fm'n‘ + E(n')%. Moreover, (A%+ B*+ C?)(2,p%qy +
Yoolag + pp2aq — Tap = Yap — Zp

= D“D- (D')*+FE(nn“~(n*)?)+ F(2m'n“~m*n—mn*)+G(m“m—(m*)?).

Recalling the following definitions ; E = a?+b%+¢2, F = aa‘+bb'+cc’, G =
(@) + (b + (¢)?, (a,b,¢) = (%p: Yp» 2), (', 6", ¢') = (24, Yg, 2),

we have E, = 2az,, + 2by,, + 2c2,, = 2m, E, =2m‘, F,=m‘+n,F, =
m“+n',Gp = 2n',G, = 2n®.

Eventually,
Gpp = 2(22, + TTapp + Y2, + YeUapp + 22, + ZgZepp);

Fpg = Tppey + xquq + (Zpg)? + TpTapg + Yopala + YppYag + (Ypa)? + Yp¥ape +
Zppa2q + ZopZeq + (2p9)* + Zp2apy,

E, = 2((:zc,,,,,)2 + ZpZpgq + (Ypg)? + YoYpga + (2pg)? + szmq)-

Hence -1/2 By, + Fyp — 1/2 Gpp = TppToq + Yoplaq + ZimZey — T2

—y? -
22, then(A? + B? + G?)(=1/2 Eqq + Fyp — 1/2 C.p) = k(A% + B2+ C2}6 +
E(nn® — (n)?) + F(2m'n' — m*“n — mn®) + G(m“m — (m*)?).

Therefore 4 ( A%+ B2+ C?)%k = (A% + B2+ C2)(=2F, + 4F,, — 2G,,) +
E(G,— (2F; - E,)G,) + F((2F, — G,)(2F, — E,) + E,G, - 2E,G,) + G(E? -
(2Fq - Gp) Ep)~

Thus we have proved Gauss‘'s Theorema Egregium with explicit form as
follows.

4(E G- F)%k = —2(EG—F2)(Egq—2Fp+Gyp)+ E(G2~2F,G,+ E,G )+
F(E,G,~ E,G, - 2E,F, + 4F,F, - 2F,G,) + G(E,G, — 2E, F, + EZ). Q.E.D.
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The birth of sectional curvature, which is one of the important ingredi-
ents in Riemannian geometry, have been found in the section four as follows.

(X, X, V-, Wk =(R - Rs)(X,Y)X,Y)

SinceR (Y,X)Z=-R(X,Y)Z.RXY)W,Z=-RXY)Z, W),
(R(Y.X) W, =(R(X,Y) Z , W), it follows from first Bianchi identity

(ie. R(X,)Y) Z + R(ZX) Y + R(Y,Z) X = 0 ) that the Riemannian
curvature tensor can be written by sectional curvatures as follows.

6R(X,Y) Z , W)=(R(X+W,Y+Z) (Y+2) , X + W) - ROHWY) Y,
X + W)—(I;(X+W,Z) Z , X + W)-{R(X,Y+Z) (Y4Z) , X)-{R(W,Y+Z)
(Y+Z) , W

+{R(X,2) Z, X))+ RWY) Y, W)- R(Y+W.X+Z) (X+2Z) , Y + W)
+{RYHW.X) X, Y + WY+ (R(Y+W,2) Z, Y + WY+<R(Y,X+2) (X+2)

" HRWX4Z) (X+42) W-{R(Y,2) Z, V)-(R(W.X) X, W).
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