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1. PRELIMINARIES

Throughout this paper we denote by (L)(S), (L*)(S) and (D*)(S) the class of all
Lebesgue integrable functions, the class of all improper Lebesgue integrable functions
and the class of all restricted Denjoy integrable functions from a measurable set
S < R into R, respectively, and we denote by |A| the measure of a measurable
set A. We recall that a gauge 0 is a function from an interval [a,b] into (0, c0)
and a é-fine McShane partition of an interval [a,b] C R is a collection {(Iy,zx) |
k = 1,...,ko} of non-overlapping intervals I, C [a,b] and z, € [a,b] satisfying
Ik C (Ik — 5(.’13;:),.’1:;: +§(Ek)) and Z:():l lIkl =b—a. If E:c:] ukl S b— a, then we say
that the collection is a d-fine partial McShane partition. Moreover, if x;, € I} for any
k=1,...,ko, then a é-fine McShane partition and a d-fine partial McShane partition
are called a d-fine Perron partition and a d-fine partial Perron partition, respectively.
We say that a function f from an interval [a,b] into R is Newton integrable if there
exists a differentiable function F' from [a,b| into R such that F' = f on [a,b]. We
denote by (N)([a,b]) the class of all Newton integrable functions from [a,b] into R.
In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal constructive integration
process of Riemann type, called the C-integral, which contains the Lebesgue integral
and the Newton integral. Furthermore in [1-3] B. Bongiorno et al. gave some criteria
for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable functions
from [a, b into R. We say that a function f from an interval [a,b] into R is improper
Newton integrable if there exist a countable subset N C [a, b] and a function F' from
[a, b] into R such that F' = f on [a,b] \ N. We denote by (N*)([a,b]) the class of all
improper Newton integrable functions from [a,b] into R. In [4] D. Bongiorno gave
a minimal constructive integration process of Riemann type, called the C-integral,
which contains the Lebesgue integral and the improper Newton integral. Furthermore
in [4] D. Bongiorno gave some criteria for the C-integrability. We denote by (C)([a, b])
the class of all C-integrable functions from |a,b] into R. The improper Lebesgue
integral, the C-integral and the C-integral are between the Lebesgue integral and the
restricted Denjoy integral.

We know that the Lebesgue integral and the restricted Denjoy integral are equiv-
alent to the McShane integral and the Henstock-Kurzweil integral, respectively. The
McShane integral and the Henstock-Kurzweil integral are Riemann type integrals and
these definitions are as follows.

Definition 1.1. A function f from an interval [a, b] into R is McShane integrable if
there exists a constant A such that for any positive number = there exists a gauge ¢
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such that

<E&

ko
3 faw) | - A
k=1

for any é-fine McShane partition {(Ix,zx) | k = 1,...,ko}. The constant A is the
value of the McShane integral of f and we denote by

A=MS) [ f@)dz = (1) / Fla)de.
[a,b] la,0]

We denote by (MS)([a,b]) the class of all McShane integrable functions from [a, b]

into R.

Definition 1.2. A function f from an interval [a,b] into R is Henstock-Kurzweil
integrable if there exists a constant A such that for any positive number & there
exists a gauge d such that

<€

ko
> fla)l] - A
k=1

for any d-fine McShane partition {(/y,zx) | k = 1,...,ko} with z; € I, that is, d-fine
Perron partition. The constant A is the value of the Henstock-Kurzweil integral of f
and we denote by

A= (HK) flz)dz = (D) f(x)dz.
[aab] [a’bl
We denote by (HK)([a,b|) the class of all Henstock-Kurzweil integrable functions
from [a, b] into R.
In [5] D. Bongiorno showed a criterion for the improper Lebesgue integral as follows.

Theorem 1.1. A function f from an interval [a,b] into R is improper Lebesgue
integrable if and only if there exist a constant A and a finite subset N C la,b] such
that for any positive numnber £ there exists a gauge § such that

<€

kg
Y @) - A
k=1

for any é-fine McShane partition {(I, z) | k = 1,... ko} satisfying z), € I whencver
zr € N. Moreover

A=) | f@)dz.
@

The theorem above gives a Riemann type definition for the improper Lebesgue
integral. In [1], see also [2, 3], B. Bongiorno gave the C-integral, which is also a
Riemann type integral, as follows.
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Definition 1.3. A function f from an interval [a,b] into R is C-integrable if there
exists a constant A such that for any positive number  there exists a gauge § such
that

<E

ko
> fl@)ll] - A
k=1

for any d-fine McShane partition {(Ix, zx) | k = 1,. .., ko} satistying 5%, d(Ix, ) <
1, where d(I,z) = inf,es |y — 2|. The constant A is the value of the C-integral of f
and we denote by

We denote by (C)([a, b]) the class of all C-integrable functions from [a, b] into R.

In [4] D. Bongiorno gave the C-integral, which is also a Riemann type integral, as
follows.
Definition 1.4. A function f from an interval [a,b] into R is C-integrable if there

exist a constant A and a countable subset N C [a, b] such that for any positive number
€ there exists a gauge J such that

<E€

Y fl@a)ll - A

for any d-fine McShane partition {(f,zx) |k =1,...,ko} satisfying

(1) Y dz) < b
(2) =z € I} whenever 7, € N.

The constant A is the value of the C’—'mtegral of f and we denote by
A= (C) f(z)dz.
[ab]
We denote by (C)([a,b]) the class of all C-integrable functions from [a, b] into R.

2. DEFINITIONS OF NEW INTEGRALS

In this section firstly we define new integrals. By observing the definitions of the
McShane, the improper Lebesgue in the sense of Theorem 1.1, the Henstock-Kurzweil
integrals, C-integral and C-integral, we become aware of the following two integrals.

Definition 2.1. A function f from an interval [a, ] into R is C*-integrable if there
exist a constant A and a finite subset N C [a, ] such that for any positive number ¢
there exists a gauge 4 such that

ko
Y fl@)lhl - A
| k=1

<€
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for any d-fine McShane partition {(Ix,zx) | k =1,..., ko} satisfying
(1) Yidla) <k
(2) 1z € Iy whenever z; € N.
The constant A is the value of the C*-integral of f and we denote by

A= (C) f(z)dz.

[a,8]

We denote by (C*)([a,b]) the class of all C*-integrable functions from [a, ] into R.
Definition 2.2. A function f from an interval [a,b] into R is L-integrable if there

exist a constant A and a countable subset N C [a, b] such that for any positive number
€ there exists a gauge ¢ such that

S fa)| L] - A
k=1

<E

for any d-fine McShane partition {(Iy, z;) | k =1,..., ko} satisfying z; € I whenever
z € N. The constant A is the value of the L-integral of f and we denote by

A= (L) f(z)dz.
[a,b]

We denote by (L)([a,b]) the class of all L-integrable functions from [a,b] into R.

By the definitions of these integrals we obtain the following relations.

(N) - (N*) (D)
N N
(C) c (C) c (0 I
v Q
(MS) U U (HK)

Il
L) < @) c @)
The above relations of inclusion are proper. We give some examples to check

these. To show these, we provide the Saks-Henstock type lemmas. The following is
the Saks-Henstock type lemma for the C*-integral.

Theorem 2.1. If f € (C*)([a,b]), then there exists a finite subset N C [a,b] such
that for any positive number € there ezists a gauge & such that
ko
k=1
for any é-fine partial McShane partition {(Iy,zx) | k=1,. .., ko} satisfying

1) Xidl o) < L

<Eg

S (@e)| L] — (C) ! f(z)dz
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(2) xx € I whenever z; € N.

Proof. Since f € (C*)([a, b]), there exists a finite subset N C [a,b] such that for any
positive number £ there exists a gauge § such that

k1
)| — (CF dzx
k;f(w A )Lblf(:c)

<E
4

for any J-fine McShane partition {(I,zx) | k= 1,...,k;} satisfying

ki

Z d(Ik, ;I‘k) <

k=1

™M | b

and z € Iy whenever z; € N. Let {(Lx,zx) | ¥ = 1,...,ko} be a d-fine partial
McShane partition satisfying

o 1
E d(I,zi) < -

£
k=1

and zy € Iy whenever z € N, and let {I, | k = kg + 1,..., k1 } be the sequence of
intervals satisfying

ky
U I = [a, 8]
k=1

and I, NI} = 0 if ky # k3. Since f is C*-integrable on each I (k=4ko+1,..., k1),
there exists a gauge d; such that

£(k)

> (f(zk,e)lfk.d -(C")

£=1

-
4(k1 — kg)

Ii.¢

f(z)d:r) s

for any d,-fine McShane partition {(fie, zxe) | £ =1,...,4(k)} satisfying

£(k)

zd Ikb-":kt’ ( ! kg)

and ryy € I, whenever z;, € N. Without loss of generality, it may be assumed
that 6, < 6 for any k = kg + 1,...,k,. Note that

k1 £(k)

Zd(rk,a:kpr 300 dIe ) < = + Z (1_ =§

k=ko+1 £=1 k=kg+1
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Therefore we obtain

kZ (f(mk)w - k f(:c)dm)
kq
<Y sl - @) [ | f(:r:)d:c‘
: k| &k)
+ 212 (f<wk,e)lfk,el - | f(x)d:c)
E b £ B €
& Z + k:§l_l m == 5
Moreover we obtain
ko
> |l - (©) [ Fa)iz

= ) (Fenind - @) ) fla)is)

F@lle|=(C*) [y, f(z)dz>0

+ )» (raim - ) / f(:r:)ds:)

J(@)le| —(C*) [;, f(z)dz<0

<E+€—£
2 2

a

The following is the Saks-Henstock type lemma for the L-integral. The proof is
similar to Theorem 2.1.

Theorem 2.2. If f € (L)([a,b]), then there evists a countable subset N C [a,b] such

that for any positive number e there exists a gauge & such that
ko

D

k=1

< E

@)\l - (E) / f(z)dz

for any é-fine partial McShane partition {(Ix,zi) | k = 1,... ko} satisfying z € I
whenever z,, € N.

The Saks-Henstock type lemma for the improper Lebesgue integral also holds, see
[5].
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Theorem 2.3. If f € (L*)([a,b]), then there exists a finite subset N C |a,b] such
that for any positive number € there ezists a gauge 6 such that

ko
Z fze) | I| — (L")/I f(z)dz| < e

for any d-fine partial McShane partition {(Ix,zx) | k = 1,...,ko} satisfying =, € I
whenever x, € N.

We show that the above relations of inclusion are proper.
Theorem 2.4. There exists a function f such that f € (C*)([0,1]) but f & (C)([0,1]).
Proof. Let f; be a function from [0, 1] into R defined by
fie)= { (1—2z) (sin s — Hia 98 x(xl—x)) , ifz € (0,1),
0, if z € {0,1},
and let /] be a function defined by

- B :c(l—:i:)sinz(l;_m), if z € (0,1),
F‘(Q’)_{ 0, if z € {0,1}.

Since f, is continuous on (0, 1) and

Jm (L) . fiz)dz = lim (Fi(5) ~ Fi(e)) =0,

we obtain f; € (L*)([0,1]) and hence f; € (C*)([0,1]). However f; ¢ (C)([0,1]).
Indeed, assume that f; € (C)([0,1]). Then by [2, Lemma 6] for any positive number
£ with £ < 1 there exists a gauge 4 such that

ko
3 1 fi(@e) (b — ax) — (Fi(be) — Fi(a))| <€
k=1

for any d-fine partial McShane partition {([ax, bx),zx) | K =1,..., ko} satisfying
ko

1
> d(lax, b, zi) < -
k=1 &
For any natural number n let
4
1= 1 - i'n-é-Znn
An = 2 )
4
b _ 1- 1 Z+nn
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Note that {[a,,b,]} is mutually disjoint and

1
Fi(an) = —an(l—ay)=—5———,
1(an) an(l — a,) 3+ 2nm
1
Fi(by) = ba(1—b,) = :
1(b) ( ) 3+ 2nm

Since the sequence {b,(1 — b,) +an(1 — a,) | n € N} is a strictly decreasing sequence
tending to 0 and

0 < ba(l—bn) + an(l - an),

D " (ba(1 = ba) + au(l — a,)) = 0,

we can take a strictly increasing finite sequence {n(k) | k = 1,..., ko} satisfying
bn(1) < 8(0) and
ko 1
£ < Z(bn(k)(l — bu[k)) + ﬂ,n(k)(l = ﬂ'n(k})) < g
k=1

Then {([ank), bn),0) | & = 1,...,ko} is a d-fine partial McShane partition and
satisfies

ko ko kq
1
Y d([ang), bawy), 0) = Y anpy < D (b (1 = bgr)) + Gy (1 — agey)) < =
k=1 k=1 k=1 &
However
ko
D 1f1(0)(bage) = ancty) = (Filbagey) = Filany))|
k=1
ko
=Y |Fi(baw) — Fi(an@)|
k=1
ko
= (b (1 = bagsy) + Engey (1 — augey))
k=1
> E
and hence it is a contradiction. O

Theorem 2.5. There exists a function f such that f € (C)([0,1]) but f & (C*)([0,1]).
Proof. Let f, be a function from [0, 1] into R defined by

_Jan+ ) filn(n+1)z—n), ifze (ﬁ,#) ,neN,
fz(‘“)‘{o, ifze{gfneN}U{O},
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and let F5 be a function defined by

_ [ F(nn+1)z—n), ifre(25,1),neN,
F‘*(m)—{o, ifme{g[neN}u{o},

where f; and F) are the functions in Theorem 2.4. Since Fj(z) = fy(z) for any
z € (73,1), n €N, we obtain f, € (N*)([0, 1]) and hence f, € (C)([0,1]). However
f2 & (C*)([0,1]). Indeed, assume that f, € (C*)((0,1]). Then by Theorem 2.1 there
exists a finite subset N C [0, 1] such that for any positive number ¢ with £ < 1 there

exists a gauge ¢ such that

ko
D 1 fa(@e) (b — ax) — (Fa(be) — Faaw))| <&
k=1

for any d-fine partial McShane partition {([ax, be], z) | k= 1,...,ko} satisfying
(1) 3L d({aw, bid, ) < &
(2) =k € [ak, bx] whenever z, € N.

Since N is finite, there exists a natural number p such that [L l] NN = (. For

p+1’p
/ 4
1 1 1 % w+2nw

+ )
p+1 2p(p+ 1)

1 B = \/ L= %1—427117
p+1 2p(p+1)
Note that {[an, b,|} is mutually disjoint. and

any natural number n let

a, =

n

F2(an) = —(p(p+ 1)&,, - p)(p $d.= p(P + 1)an)
= =P+ 1)((p +1)an —1)(1 - pan)
i
T St + 2nm’

Fy(b,) = (plp+ bn —p)(p+1—p(p+ 1)by)

= p(p+1)((p+ 1)b, — 1)(1 — pby)
1

5 +2nm

Since the sequence {p(p+1)(((p+1)b, —1)(1—pb,)+((p+1)a,—1)(1—pa,)) | n € N}
is a strictly decreasing sequence tending to 0 and

0 <plp+1)(((p+ 1)by — 1)(1 — pb,) + ((p + Da, — 1)(1 — pay)),

D pe+1D)(((p+ 1)ba — 1)(1 = pby) + ((p + 1)a, — 1)(1 — pay)) = oo,
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we can take a strictly increasing finite sequence {n(k) | k = 1,...,ko} satisfying
bn(l) << = P+1 + 6 (P+1) and

ko
€< EP(P+ L)(((p + 1)bag) — 1)(1 = poury) + (2 + 1)ang) — 1)(1 — panw)) < !

k=1

Then { ([an(k],bn(k)], ﬁ) \ R (- ko} is a d-fine partial McShane partition and

ko 1
d 7bﬂ 5o
; ([an(kJ *)) . +1)

However

(p 1) O = ) = (Faloae) = Faons)

k=

= Z | Fy(bngy) — F2(@n(x))|
k=1

= ip(p + 1)(((p+ Dbnw) — 1)(1 = pbuxy) + ((p+ 1)an) — 1)(1 — panw)))
e
and hence it is a contradiction. U
Theorem 2.6. There ezists a function f such that f € (L)([0,1]) but f & (L*)([0,1]).
Proof. Let f3 be a function from [0, 1] into R defined by

| filn(n+ 1z —n), fze(z7,2),neN,
f3($)—{0, 1fm€{1|nEN}U{O}
and let F3 be a function defined by

— n(n+1 Fl(n(n+ )Q'J—ﬂ), IEZEE(—‘I'—I l) T?.EN
FS(E)_{Of ) 1f:r€{ | GN}U{(}}
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where f; and F; are the functions in Theorem 2.4. Then f3 € (L)([0, l]) but f; &

(L*)([0,1]). Indeed, since f; is improper Lebesgue integrable on each [, 1] and

Fi?

@) [, =0

by Theorem 1.1 there exists a finite subset N,, C [ iorx 1] such that for any positive
number ¢ there exists a gauge 9,, such that

Zfi}(mn, |Inkl

for any 9,-fine McShane partition {(I,x, ZTnk) | K =1,...,k,} of [n i l] satisfying

T € Inyx whenever x,; € N,. It is obvious that N, = {- ir’ 11, Let

EW )

It holds that M, = n(++1)M1' Without loss of generality, it may be assumed that
(z = ba(z),x + 8,(z)) C (35, L) forany z € (35,2). Let N = {1| neN}u{0},

n+1? n+1?
d(xz) = du(z) for any z € (n+1’ 1), 6 (%) = min {6, (£),0,—1 ()} forany n € N
with n > 2 and 4(0) < ; with M, < §. Let {(fx,2x) | k = 1,...,ko} be a d-fine

2

2n+1

Py a— {|F3(m)|

McShane partition {(x,zx) | k = 1,..., ko} satisfying z; € I, whenever z; € N. Let
q:mln{n|I1 [n+1’n)%0} Then
ko
D falew) K]
k=1
S BOE+Y Y A Y Y A ( ) In
L el P n=2ler,
< |f(0)|4l|
1 1
+ ; Cg ; fa(zi) [ I| + Z fs ( ) Irn [H—l’ 5”

1 1
n+1l'n

g1
+Z Z I3 (n—i 1) I, N
n=2 #Iéjk
+ Y fal@) ki

Ikc[n_-i-] %
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1 1 1
+ = | |xN g =
Zfs (n) t [T&+1 n]
n<ik

+ Zfa (;)

wofil+ 5 s

<0+ 2 falo) IIk|+zfa( )

i
q

1 1 +§ £ +£
qg+1'¢q ﬂ:22"“ 22

By Theorem 2.3 we obtain

[l

Folaw) Il — f T

Z ]f3(-’19k)|fk| ¥ Z fs ( )
x

1.4
‘i‘

f3(-’3k

Z

infytad -, g

i

+|(L7) f3(z)dz

Jowtp ot

<F+M

Therefore

=1
3

(ze)| || < zw +Mq+22n+l -5_

< M, +22n+1

n=1

< E

and hence f3 € (L)([0,1]). However, since it can be shown similarly to Theorem 2.5
that f3 & (C*)([0,1]), we obtain f3 & (L*)([0,1]). a

Theorem 2.7. There exists a function f such that f € (C*)([0,1]) but f ¢ (L*)([0,1]).
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Proof. Let C be the Cantor set in [0, 1], let {(a,,3,) | p € N} be the sequence of all
connected components of [0, 1] \ C, let f4 be a function from [0, 1] into R defined by

(.Bp_ap)g (Bp—ap)? (z—ap)(Bp—<) (m_ap)(ﬁp_z’)'
fa(z) = ifze (Otp,ﬁp),p € N,
0

2(ap+Gp—2z) ((Iuap)(ﬁﬂ_z] sin —Pp—ap)? coS M)

ifzxeC,

and let F; be a function defined by

T—ap)%(Bp—x)? . fp—agp)? :
Fy(z) = e singlasals, itz € (o f) peEN,
0, ifzel.

Since Fj(z) = fa(z) for any =z € [0,1], we obtain f; € (N)([0,1]) and hence
fa € (C*)([0,1)). However f;, & (L)([0,1]) and hence f; ¢ (L*)([0,1]). We show
fo & (L)([0,1]). Assume that fy € (L)([0,1]). Then by Theorem 2.2 there exists a
countable subset N C [0, 1] such that for any positive number ¢ there exists a gauge
4 such that

ko

D fal@e) (b — ai) — (Fa(be) — Fa(ar))| <&

k=1

for any d-fine partial McShane partition {([ax,bi),zx) | £ = 1,... ko} satisfying
T € [ag,by] whenever 1, € N. Since N is countable and C is perfect, there exist
z € C and {(apq), Bp)) | ¢ € N} C {(e,8,) | p € N} such that z ¢ N and

(ap(q), Mﬂ) C (2,2 + d(2)) for any ¢. For any natural numbers q and n let

(Bpta) — Qp(q)) (1 RY, L= —Ew-:?mr)
2
2 b
(Botg) — Ap(a)) (1 =g fL— §+42mr)
byn = Qp(q) T+ - 2

qn = Op(g) T
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Note that {|agn, by.]} is mutually disjoint and

(agn — apg)) (B Gigii)
Filagn) = — q p(a))” (Bola) — aq

(Bota) — Qpi(g))*
1

- (gﬂ — 2mr)2
(bg,n — ap(q))*(Bp(g) — bgin)?

(Botg) — @p(g))*
1

(% - 2n7r)2-

)

Since {([agn,bgn),2) | g,n € N} is a d-fine partial McShane partition and

ZZIf‘l(z)(bq,n — Ggn) — (Fa(bgn) — Fa(ag,n))| _ZZ|F4(bqn — Fy(aga)| = 00

g=1 n=1 g=1 n=1

there exists {([ax,bi],2) |k =1,...,ko} C {([agn,byn), 2) | 7,7 € N} such that

Zﬂ | fa(2)(bx — ax) — (Fy(b) — Fa(ax))| > €.

It is a contradiction. O
Theorem 2.8. There ezists a function f such that f € (C)([0,1]) but f & (L)([0,1]).

Proof. We show in the proof of Theorem 2.7 that f, € (N)([0,1]) and hence f; €
(C)([0,1]) but £, & (L)([0,1]). O

Theorem 2.9. There ezists a function f such that f € (C*)([0,1]) but f & (L)([0,1]).

Proof. We show in the proof of Theorem 2.7 that f, € (N)([0, 1]) and hence f, €
(C*)([0,1]) but f, & (L)([0,1]). O

Theorem 2.10. There ezists a function f such that f € (L)([0,1]) but f & (C*)([0, 1]).
Proof. We show in the proof of Theorem 2.6 that f5 € (L)([0,1]) but f5 & (C*)([0, 1]).
O

3. PROPERTIES OF THE C*-INTEGRAL

In this section we give a criterion for the C*-integrability.

Definition 3.1. Let F be an interval function on [a,b] and let N be a finite subset
of [a,b]. Then F is said to be C*-absolutely continuous on E C [a,b] with respect to
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N if for any positive number ¢ there exist a gauge § and a positive number 7 such
that

ko

Z \F(I)| <€

k=1
for any d-fine partial McShane partition {(Jx,zx) | k = 1,..., ko} satisfying
(1) zx € E for any k;
(2 T dl,m) < &
(3) zx € I whenever 73, € N;
(4) X Ikl <.
We denote by ACq+(E, N) the class of all C*-absolutely continuous interval functions
on E with respect to N. Moreover F' is said to be C*-generalized absolutely contin-
uous on [a,b] if there exist a finite subset N and a sequence {E,,} of measurable
sets such that |J._, En = [a,b] and F € ACc-(E,,, N) for any m. We denote by
ACGc:([a,b]) the class of all C*-generalized absolutely continuous interval functions
on [a,b|.

Lemma 3.1. If F € ACG¢([a,b]) and E C [a,b] with |E| = 0, then there exists
a finite subset N C [a,b] such that for any positive number ¢ there ezists a gauge o
such that

ko
Y IF(L) <e

for any é-fine partial McShane partition {(Ix,zi) | k =1,... ko} satisfying
(1) =z € E for any k;

(2) E:O=1 d(Ikawk) < %;

(3) =y € I, whenever x, € N.

Proof. Since F' € ACGg-([a, b]), there exist a finite subset N C [a, b] and a sequence
{Em} of measurable sets such that (J_, E,, = [a,b] and F € AC¢-(E,,, N) for any
m. Therefore for any positive number £ and for any natural number m there exist a
gauge d,, and a positive number 7,, such that

= £
D IF()| < 5
k=1

for any é,,-fine partial McShane partition {(/,zx) | k = 1,..., ko} satisfying
(1) =z € E,, for any k;

(2 TR dlm) <l
(3) zx € I whenever z; € N;
(

4) Z:o:l |Ik| < m.
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Since |E N E,,| = 0, there exists an open set O,, D E N E,, such that |Op,| < 7.
Define d;,(z) = min{d,,(z), d(O%,, )}, where OF, is the complement of O,,. Then we
obtain

Z |F(L" 2m+1

for any 47, -fine partial McSha.ne partition {(Jx,zx) | k= 1,..., ko} satisfying (1), (2),
(3) and (4). Define (z) = 4;,(z) for any z € EN E,, (m € N). Then we obtain

ZIF(I:: =3 3 IR < szﬂ =3

n=1z€E,

for any d-fine partial McShane partition {([,zx) | k= 1,..., ko} satisfying
(1) zx € E for any k;

(2) 2 d o) < b
(3) =z € I whenever z; € N.

O

Lemma 3.2. If F s differentiable at = € [a, b, then for any positive number € there
exists a positive number § such that

|F(t) — F(s) — F'(z)(t — s)| < e(2d([s,t],z) +t—s)
for any interval [s,t] C (z — 6,z + 8) N |a, b].

Proof. Since F is differentiable at z € [a,b], there exists a positive number § such
that

|F(£) — F(z) - F'(z)(€ — 2)|| <elé —z|
for any £ € (z— 4,z +d)N[a,b]. Therefore for any interval [s,t] C (z—4d, z+8)N[a, b]
we obtain

|[F(t) — F(s) — F'(z)(t - s)]|
< |F(t) - F(z) — F'(z)(t — z)| + |F(z) — F(s) — F'(z)(z - s)|
<elt—z| +¢e|s — x|
= g(2d([s,t],z) + t — s).
O

Theorem 3.1. For any F € ACG ¢~ ([a,b]) there ezists 2 F([a,z]) for almost every

z € [a,b], and there ezists f € (C*)([a,b]) such that f(z) = LF([a,z]) for almost
every z € [a,b| and

F(I) = (C*) f f(z)dz

for any interval I C [a,b].
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Conversely the interval function F defined above for any f € (C*)([a,b]) satisfies
F € ACG¢([a,b]).

Proof. Note that, if F € ACGg¢-([a,b]), then F € ACGy([a,b]), see [7, Defini-
tion 9.14]. By [7, Theorem 9.17] there exists - F([a, z]) for almost every z € [a, b].

Let
B = {JJ

Then |E| = 0, and by Lemma 3.1 there exists a finite subset N C [a, b] such that for
any positive number & with £ < ;- there exists a gauge 4, such that

éF([a,z]) does not exist at z € [a, b] } :

ko .
ZlF(Ik)l A
k=1

for any d,-fine partial McShane partition {(I, zx) | k = 1,..., ko} satisfying

(1) zx € E for any k;

(2) Y d(,m) < 3
(3) =z € I} whenever z; € N.

If z ¢ F, then by Lemma 3.2 there exists a positive number d;(z) such that

F(t) — F(s) — %F([a,m])(t —35)| < %2(2d([s,t],$) +t—s)

for any interval [s,t] C (z — d2(z), z + da(z)) N [a,b]. Let

| éi(z), ifz€E,
ozl = { 5(z), ifz¢E,

and let

0, freFE,
f(z) = { 2 F([a,x]), ifz¢E.
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Then we obtain

ko
Y f@ILl - F)| < |3 FU)|+ | falhl - F(L)
k=1 .’EkEE IkgE
< DO IF@) 4 D 1f@e)lIl — F(L)|
R €E  €E
£ g2
< <+ 5 (2d(Ie, zi) + |1i])
zx ¢FE
e g2 1 &2
< Z+§2’E+§(b—0)
¢ Bof LB
B 4 4 2

for any interval I C [a,b] and for any d-fine McShane partition {(l,z}) | k =
1,...,ko} of I satisfying
(1) 3 d(Ty, o) < 3
(2) zx € I, whenever z, € N.
Conversely let f € (C*)([a,b]) and let

F(I) = (C7) ff f(z)dz

for any interval I C [a,b]. For any natural number m let E,, = {z | z € [a,b], |f(z)| <
m}. Then (J,_, Em = [a,b]. We show that F € ACq+(E,,, N), where N is an
excepting finite subset of [a,b] in the definition of the C*-integral of f. Let £ be a
positive number. By Theorem 2.1 there exists a gauge & such that

€

D f@)ll = Pl < 5

for any d-fine partial McShane partition {(Iy,zx) | k=1,..., ko} satisfying

(1) YR ds ) < &
(2) zx € I, whenever z; € N.

Let n = 5= If zx € E,, for any k and E?ﬂ [Ix| < 7, then we obtain
ko

SIFG < S U@ + S0 1@l - F)

k=1
ko €
<  § —
m;( el + 5

< E.
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