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ABSTRACT.

We discuss the fluid dynamics and the heat theory by Poisson. These two theories
or themes are studied in the arrival of continuum.

The hydrodynamists like Navier, Poisson and Cauchy propose at first the wave equa-
tions in the elasticity and next, the fluid equations in incompressibility since Euler and
Lagrange succeeded. Poisson and Navier discuss the activity of molecules in regard to the
attraction and repulsion in rivalry to each other. Navier depends on the Fourier’s idea
comes from the theory on heat analysis. Fourier and Poisson propose the heat theories
in rivalry to each other, from the viewpoint of mathematical physics on the continuum.
These all are, the mathimatical physicians, but we think, Poisson is an acuter and severer
observer on the physics than others. From here, the both theories and deductive method
of heat theory are different, however, the results are the same one. Although regretably,
Poisson misses the historical priority in the fluid dynamics and the heat theory, however,
contributes to reform the preceding theories.

Our motivation in this paper is to consider the Poisson’s singularity from the math-
ematical viewpoints.
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1. INTRODICTION
1,2,3

1.1. What is the wave, the heat and the fluid ?

Kepler (1571-1630) 1634 [34] proposes the laws on motions of planets in reserving many
analytical open problems. Huygens (1629-95) proposes and Fresnel (1788-1827) corrects
the wave principles. Euler 1748 [16] proposes the wave motion of string. Navier [52] and
Poisson [73] propose the fluid equations, successively after the erastic wave equations of
Navier’s [51] and Poisson’s [73] respectively. After Fourier 1822 [22] completes the heat
theory, Fourier 1833 [28] combines his communication theory with the Euler equation 1755
[17] and puts the heat equation of motion in fluid, in which he expresses the molecular
motion with communication and transportation of molecules before Boltzmann’s modeling
with collision and transportation.

How does the wave occur 7 Newton 1686 [55] shows his principle on the wave motion
in the water pressure.

The pressure doesn’t propagate by the fluid of the secondary linear strait,
except for the particle of adjacent fluid. If the adjacent particles a,b, ¢, d, e

ITranslation from Latin/French/German into English mine, except for Boltzmann.

2To establish a time line of these contributor, we list for easy reference the year of their birth and death:
Newton (1643-1727), Euler (1707-83), d’Alembert (1717-83), Lagrange (1736-1813), Laplace (1749-1827),
Fourier (1768-1830), Navier (1785-1836), Poisson (1781-1840), Cauchy (1789-1857), Dirichlet (1805-59)
Riemann (1826-66), Boltzmann (1844-1906), Hilbert (1862-1943), Schrodinger (1887-1961).

3We use ({}) means our remark not original, when we want to avoid the confusions between our opinion
and sic. (<) means our translation in citing the origin.
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propagate in the straight line, press from a to e ; the particle e progresses
separately into the oblique points f and g, and without sustained pressure,
and moreover, to the particles h and & ; m as it is fixed in another direction,
it presses for the particle into propping up ; the unsustained pressure goes
separately into the particles [ and m, and as this way, it follows successively
and limitlessly. thus it will occur so many time, inaccurately, to the particle
in the indirect adjacency. Q.E.D. [55, pp.354-5] (trans. from Latin, mine.)

1
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fig.1 The wave pushed with particle fig.2 The wave of a cord
by Newton’s hypothesis in 1686 by Euler in 1748

What is the fluid 7 According to today’s diffinition, it is called the fluid is a limitlessly
Jree continuum. Where does continuum come from in the historical view ?

1.2. General remark. Fluid Dynamics and Heat Theory by Poisson.

1. We discuss historical development of classical fluid dynamics and heat theory from
the viewpoint of mathematical history, in particular, of Poisson.

2. These situations owe to the arrival of continuum, on which we summarize the trail-
blazers of the trigonometric series such as Euler, Lagrange, Laplace, et al.

3. Poisson issues his last work [77] in 1835 in rivalry to Fourier and Navier, in which he
discusses the essential theories for the expression between fluid motion and heat motion,
emphasizing the hypothesis of molecular radiation with the mathematical points such as
complete integral.

4. Prévost’s work [81] on heat communication, which precedes Fourier, and whose ini-
tial scholar work and after it.

5. Sturm and Liouville refer Poisson’s tools such as particular value and particular
function, entire function, to solve the differential problems.

6. Comparing these books and papers, we show the connection between the hydrody-
namics, wave and heat dynamics, and the process of new mathematics putting forth in
applied or physical mathematics.

1.3. Poisson’s paradigm and singularity.

Poisson publishes the last books consist of three elements : [74, 75, 76, 77]. ([75, 76] are
the same title and are divided into two volumes.) These are his paradigm of the mathe-
matical physics through all his academic life, entitled a study of mathematical phisics. (Un
Traité de Physique Mathématique.) In the rivalry to Euler, Lagrange, Laplace, Fourier,
Navier, et al., we think, he struggles to make his paradigm. On the other hand, as its
proofs, there are some singular but important sugestions such as :

e rigorous sum instead of integral,

e critics to easy applying the rule comes from real to transcendental function,
e conjecture on the defect of the proof in the eternity of exact differential,

e contribution to the fluid dynamics, especially, to the Navier-Stokes equations,
[ J

deduction of another heat equation from the basically molecular analysis.
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We discuss these topics in the following papers.

2. THE HEAT AND FLUID THEORIES IN THE 19TH CENTURY

2.1. The theory of heat communication in the Prévost’s essay.

Prévost [81] discuss the communication of heat between two corps in earlier than
Fourier, who corresponds with Prévost, according to Grattan-Guiness [33, p.23].
His principles are as follows : all the corps radiate the heat without relation to the
temperature. The heat equilibrium is induced with the equal quantity of heat by the heat
communication. These principles become shared with Fourier successively. (cf. Table 3.)

2.2. The outline of the situations surrounding Fourier and Poisson.

About the situations around Fourier, we can summarize as follows :

1. Fourier’s manuscript 1807, which had been unknown for us until 1972, I. Grattan-
Guinness [33] discovered it. Fourier’s paper 1812 based on the manuscript was prized
by the academy of France. We consider that Fourier, in his life work of the heat theory,
begins with the communication theory, and he devoted in establishing this theme as the
priority.

2. Owing to the arrival of continuum theory, many mathematical physical works are
introduced, such as that Fourier and Poisson struggle to deduce the trigonometric series
in the heat theory and heat diffusion equations. In the curent of formularizing process of
the fluid dynamics, Navier, Poisson, Cauchy and Stokes struggle to deduce the wave equa-
tions and the Navier-Stokes equations. Of cource, there are many proceding researches
before these topics, however, for lack of space, we must pick up at least, the essentials
such as following contents :

3. Fourier [28] combines heat theory with the Euler’s equations of incompressible fluid
dynamics and proposes the equation of heat motion in fluid in 1820, however, this pa-
per was published in 1833 after 13 years, it was after 3 years since Fourier passed away.
Fourier seems to have been doutful to publish it in life.

4. After Fourier’s commnunication theory, the gas theorists like Maxwell, Kirchhoff,
Boltzmann [4] study the transport equations with the concept of collision and transport
of the molecules in mass. In both principles, we see almost same relation between the
Fourier’s communication and transport of heat molecules and the Boltzmann’s collision
and transport of gas molecules.

5. Since 1811, Poisson issued many papers on the definite integral, containing tran-
scendental, and remarked on the necessity of careful handling to the diversion from real
to imaginary, especially, to Fourier explicitly. To Euler and Laplace, Poisson owes many
knowledge, and builds up his principle of integral, consulting Lagrange, Lacroix, Legendre,
etc. On the other hand, Poisson feels incompatibility with Laplace’s 'passage’, on which
Laplace had issued a paper in 1809, entitled : On the ’'reciprocal’ passage of results be-
tween real and imaginary. in 1782-3.

6. To these passages, Poisson proposed the direct, double integral in 1811, 13, 15, 20
and 23. The one analytic method of Poisson 1811 is using the round braket, contrary
to the Euler’s integral 1781. The multiple integral itself was discussed and practical by
Laplace in 1782, about 20 years before, when Poisson applied it to his analysis in 1806.

7. As a contemporary, Fourier is made a victim by Poisson. To Fourier’s main work :
4



The analytical theory of heat in 1822, and to the relating papers, Poisson points the di-
version applying the what-Poisson-called-it ’algebraic’ theorem of De Gua or the method
of cascades by Roll, to transcendental equation. Moreover, about their contrarieties, Dar-
boux, the editor of (Buwvres de Fourier, evaluates on the correctness of Poisson’s reasonings
in 1888. Drichlet also mentions about Fourier’s method as a sort of singularity of passage
from the finite to the infinite.

2.3. The preliminary discources on Fourier from the Nota to I.Grattan-Guinness.

2.3.1. The Fourier’s Oeuvres edited by G. Darbouz.
The preliminary discource by Fourier, edited by G. Barboux, says in 1820 :

G. Darboux says in his first edition in 1888 : The works relating to the
heat theory by Fourier appear in the late 18th century. It has been sub-
mitted to the Academy of Science, in Dec. 21, 1807. his first publication
is unknown for us : we don’t know except for an extract of 4 pages of BSP
in 1808 ; It was read by the Committee, however, may be withdrawn by
Fourier during 1810. The Committee of Academy, held in 1811, decided the
following judgment : “Make clear the mathematical theory on the propaga-
tion of heat, and compare this theory with the exact result of experiments.”
(trans. mine.) *

2.3.2. The Fourier 1822 by A. Freeman and The Fourier 1807 edited by I. Grattan-
Guinness.

In 1878, A. Freeman published the first English translated Fourier’s second version,
of which the preliminary is completely the same as G. Darboux 1888, ten years later
than A. Freeman. In 1972, 1. Grattan-Guinness discovered the manuscript 1807. He pays
attentions to the Avertissment in the second edition by G. Darboux as above we mention.
We are thankful to Grattan-Guinness for the showing one of the paragraph of €.136 (
Des températures finales et de la courbe qui les présente. ), and its belonging figure®
of the Fourier’s Manuscript 1807, Théorie de la propagation de la chaleur, edited and
commented by Grattan-Guinness [33, p.371-2].

4(l}) About the extract, same as above footnote. Lagrange was a member of the Committee of judge-
ment and poses against Fourier’s paper 1807. cf [83]. G.Darboux lists as follows : Lagrange, Laplace,
Malus, Haiie and Legendre. [10, p.vii].

SThis figure is the Fourier’s original. [33, p.370]. In this figure, on the z axis, there are the numbers
1, 2, 3,4
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3. THE THEORETICAL CONTRARIETIES TO FOURIER

3.1. Lagrange, Fourier and Poisson on the trigonometric series.

Riemann studies the history of research on Fourier series up to then (Geschichte der
Frage uber die Darstellbarkeit einer willkiihrlich gegebenen Function durch eine trigonometrische
Reihe, [83, pp.4-17].) We cite one paragraph of his interesting description from the view
of mathematical history as follows :

(«) When Fourier submitted his first work to the Academy francaise® (21,
Dec., 1807) on the heat, representing a completely arbitrary (graphically),
given functions with the trigonometric series, at first, gray-haired Lagrange’
irritates so much, however, refuses flatly. The paper is called now being
belonged to the Arcive of the Parisian Academy francaise. (id. According
to Mr. Professor Dirichlet’s oral presentation.) Therefore, after Poisson
inspects carefully through the paper,® promptly argues that in the paper
of Lagrange, there is a paragraph on the vibration of string, where Fourier
may have discovered the descriptive method.® To refuse this defect of the
statement telling clearly on the rivalry relation between Fourier and Poisson,
we would like to back to the Lagrange’s papers, so we can reach the event
in the Academy nothing have been clear yet. [83, p.10] (trans. mine.)

Riemann cites exactly the French original as follows :
(<) In fact, a paragraph cited by Poisson is the expression :

y:Q/YsinXﬂdX Sina:ﬂ+2/Ysin2X7rdX sin2x7r+~--+2/YsinnX7rdX sinnzm, (1)

So, If # = X, then y = Y, and Y is the ordinate confronting to the abscissa

X. This formula doesn’t coincide with the Fourier’s series'’ ; there is suffi-
ciently the capability of some mistake; however, it is only a simple outlook,
because Lagrange uses [ dz as the integral symbol. Today, it is to be used
by > AX. When we inspect through his papers, it is beyond believable
that he expresses a completely arbitrary function by series expansion with
infinite sins.  [83, pp.10-11] (trans. mine.)

Lagrange had stated (1) in his paper of the motion of sound in 1762-65. [45, p.553]

5({) i.e. French Academy.

"({}) Lagrange was then seventy-one years old.

8id.

%id.

10(U) This means two interpretations : one means the series by Fourier, the other today’s conventionally
used nomenclature : ’the Fourier series’. Judging from Riemann’s young days, in 1867, this may mean
the former. In generally, the trigonometric series is used then.
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3.2. The trials to seek the mathematical rigours on heat theories.

Poisson [64] traces Fourier’s work of heat theory, from the another point of view.
Poisson emphasizes, in the head paragraph of his paper [64], that although he totally
takes the different approaches to formulate the heat differential equations or to solove
the various problems or to deduce the solutions from them, the results by Poisson are
coincident with Fourier’s. Poisson says as follows in the top page of [64] :

The question, which I propose to research, have been the subject of the
prize proposed by the first class of the Institute, and won by Fourier at the
beginning of 1812. The piece prized is reserved at the secretariat, where, it
is permitted to look through : I will take care of, through this Memoire, to
cite the principle result which Mr. Fourier have obtained before me ; and
I dare to say at first, in all the particular problems which we have taken
the one and the another for examples, and which being naturally indicated
in this material, the formulae of my Memoire coincides with that this piece
includes. However, just only that there is common between our two oeuvres
; because, it were to formulate the differential equations of the motion of
the heat, or it were to solve them and deduce the definitive solution of each
problem, I am using the entirely different methods from that Mr. Fourier
is tracing.  [64, pp.1-2] (trans. and italics mine.)

Poisson [64] considers the proving on the convergence of series of periodic quantities by
Lagrange and Fourier as the manner lacking the exactitude and vigorousness, and wants
to make up to it. Poisson proposes the different and complex type of heat equation
with Fourier’s. For example, we assume that interior ray extends to sensible distance,
which forces of heat may affect the phenomena, the terms of series between before and
after should be differente.

We remark that Fourier’s integral problems are handled in the scope on the infinite
solid in Fourier 1822 [22]. We must pay attention to that these considerations have been
capable on the continuum theory.

3.3. Trigonometric series.
Poisson shows his trigonometric series as the rivalry to Fourier as follows

(14) pgy flx) = %/000 /_00 cos a (z— ) f(2) da d/, (2)

Poisson says :  of which Fourier enhanced the Analysis, or, at least, that he gave at
the first time for the cases where we have f(z) = f(—z) or f(z) = —f(—z), and of

which he has been easy to deduce the general formula. We show an example of Fourier’s
7



trigonometric series as follows :

1
r f(z) = 5/F(;c)dgc
+ cos x/F(m) cos x dx + cos QJ;/F(x) cos 2z dx + - -

+ sin a:/F(x) sin z dx + sin Qx/F(ch) sin 2z dx + -

[22, §233, p.230] or [23, §233, p.256)].
Poincaré 1895 (78] proves the existence of the function satisfying the Dirichlet con-

dition :

Theoréme. - Siune fonction [(x) satisfait a la condition de Dirichlet dans 'intervalle
(—m,7), elle pourra élre représentée dans ce meme intervalle par une série de Fourier,

c¢’est-a-

nf

dire que l'on aura :

() = %/j flx) de +ZCOSm.’L’/—ﬂ f(z) cosma da —\—X:Sinmac/:r f(z)sinme dx

[78, p.57, §38] (cf. Table 3.)

4. CONFUSIONS AND UNIFY ON CONTINUUM THEORY

The hysico-mathematicians are must construct at first the physical structure, then
allpies the mathematical concept on it. The former is necessary to fit with the actual
phenomena. Arago 1829 [1] seeks to separate these items to Navier 1829 [53] in the

current

of dispute with Poisson and Arago. This is comes from the word what-Navier-

called l'une sur ’autre, he fails to explain exactly it, and since then, his theories and the
equations are neglected up to the top of the 20th century. We consider that the confusions
and unify are as follows :

Poisson and Fourier discuss on the handling of the De Gua’s theorem into the
transcendental equations. Without clear explanation, Fourier passed away in 1830.
cf. (fig4)
On the attraction and replusion of molecule, Navier depends on Fourier’s principle
of heat molecule. The then hysico-mathematicians had little evaluated Navier until
the top of the 20th century.  For formulation of heat motion in the fluid, Fourier
cites not Navier’s fluid equations, but Euler’s fluid equations.
The hydrodynamists like Navier, Poisson, Cauchy are propose the wave equations
in the elasticity, and the last two hydrodynamists proposes the total equations in
unity on the continuum.
On the formulation of heat motion in the fluid, Fourier had submitted this paper,
however, until his death, he has not published it, in which he seems to aim the
unity of hydro- and thermodynamics, however, he has given up it.

8



f/;amm as0 b0 Fourer | 5=2 b= in Poisson’s |

: d s Y
| (Note} o I R .:
EX——-ex —be"F—o ;.f’.’,’?ff.‘ﬁ’l’.’ﬁ'?’}f‘.’ﬁ’.’,,.f X=e*—e**— o
d"X x n ax ' dnx_e:_zneu r——
d—.t—_"=e —ba € s dz*
+1
d“+‘X~ez'~ban+teax a X:e‘——z"+‘e"
daret ’ dzi+s
d+2*X x n42 az | d"+*X
pro—iald —ba e > J d—xw-—z‘:ez—-—ﬂin""e“,
L deeiX x 41 _az D viddie 1 X .
i = — = i — e ohr g2m
T =0, 0ue ba e “=o0, ! I S gaET=0,0u e*—2o"* e**—=p,
d- X ngaz [Nowbront | |4"X
m=—6(1~a)a e s i . Tz 20.e,
dr+2X n+4-1 ax : A2 X . ]
T =0b(1—a)a e, fANewT.ﬁgk ! = —ate,
d"‘i dn+3X b s o2n+41 2a.z‘mgf Product aX . a2 X o
drdom=—b0(1—a)a e between dz dazr+ts —
§ New :
| tive for : — i But, Front=0& Back = 0, both signs are same
: :ggt‘;;ei :;:7 a2 =IM—QL\/_—: , of zerp, then the produst is zero
. routof x 1—a .
; g ) § FromMiddle: e {1~27%tgx J=0 &< 8
| ® One real and numbetless itmaginaries |  » Only reatroot of 1~ 25 2pr =0

fig.4 Difference of applying the De Gua’s theorem into the
transcendental between Poisson and Fourier

4.1. A comment on continuum by Duhamel.

Duhamel 1829 [15] points out the theory of continuum from the viewpoint of scientific
history, citing from the Poisson’s paper in the argument with Navier on the nonsense of
Navier’s null action in nature.

(«=) Up to now, the reserchers have considered the corps of the nature
as continue, it makes illusion to this regards, however, partly because this
hypothesis simplify the calcul, and partly because they think that it gives
a sufficient approximation. Mr. Poisson think that this hypothesis isn’t
never admissible, and justify his opinion with following considerations.

When a corps, say, is in its natural state, namely, when
it isn’t compressed with any force, when it is placed in the
vacume, and when we make abstract of its weight, not only
any molecule is in equilibrium in the interior and its surface,
but also, we see more over, in this Memoire, the resultant
of molecular actions is separately zero of two opposite sides
od each small part of the corps. In this state, the distance
which separate the molecules must be such that this condition
were replaced, in having regard to their mutual attraction and
the caloric repulsion which we take also among the molecular

actions. However the corps is hard or something solid, the
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force which opposes the separation of their parties is zero or
doesn’t exist in the state of which we discuss. It doesn’t begin
the existence that when we seek to effectuate this separation,
and when we change only a few distance of the molecules.
Namely, if we explain this force with a integral, it gets to as
its value being zero in the natural state of corps, this will
be so even if after the variation of the molecular distances, so
that, the corps will opposite any resistance to the separatiopn
of its parties ; this is what will be nonsense. It results from
here, that the sum which explain the total action of a series of
disjoint molecules can’t convert the sum instead of the definite
integral ; this is what holds in the nature of the function of
distances which represent the action of each molecule. The
molecular force, of which we will find the expression in the
§1 of this Memoire, is calculated according to this principle,
and reduced at least in the simplest form of which it were
susceptible.

We explain afterward how he do with Mr. Poisson obtain the same equa-
tion with Navier has made known in 1821, with talking the molecular ac-
tions, and in considering the corps as continue.  This method inspecting
the molecular actions is originally due to Laplace, who has deduced from
this a nice theory of capillary action. Mr. Navier has obtained afterward
the nice idea to deduce the theory of elastic solid ; however, both of the
mathematicians have supposed the molecules of adjacent corps, and Pois-
son is the first of coincidence with calculations with the physical structures.
In addition to, although the hypotheses of continuum theory have been ac-
tually so inexact, however, have played big roles in the science, In the roles,
have played, the theories by Mr. Laplace have welcomed by the researchers.
This observation on the molecular activities, in the bulk of special problems,
above all, in theory of the elastic bodies, it has the very countless merits
to have to sweep out the all special hypotheses. Mr. Poisson emphasizes
the merit of this method ; we will reproduce textually this passage from his
Mmoire.  [15, pp.98-99] (trans. and italics mine.)

Poisson explains the function f(r) of distance between the two molecules. If using the
integral, then as follows :

2 3 2
Kz—W/ —T—f(T)dr, k="
3 0 Ot6

Tt Q
= — —d.—f(r
15 ), o8 r ’
en multipliant sous les signes Y par %, et remplacant ces signes par ceux
de Iintégration. Or, si 'on intégre par partie, et si 'on fait attention que
f(r) est nulle aux deux limites, il en résultera
o2 [ 3
k=—— — dr = —K 4
5| S ()
ce qui montre que la quantité K étant nulle, on aurait aussi k = 0. [72,
pp.398-399, §14]
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(<) This equation becomes the cause of important remark. The sums >~ in the no.
6 expressed by K and k, which we can’t transform into the integral, while the variable
7 increases in each of them with very small differences equal to o. Therefore, if this
transformation would be capable, k and K become zero syncronously. From here, it
would result

e that after changing of the form of corps, the forces P, (J, R would be the same
zeros as before,

e and that the given forces operating on the corps could not make equilibrium.
These are inadmissible. [72, pp.398-399, §14] (trans. mine.)

We show Poisson’s logic as follows : Poisson proposes the two constants must be with
the sum :

2 rs _ 2 ro dif(r)
Tl =R B T =k
When begining to perform the integral instead of the sum with £,
1 1, 1
A(10)) = =1 ()dr = £) (5 ) dr

=

27 [ 7 1 27 [ 7t 2 [ 3 1
== —d—)==[ - inyar=1-K.
=13, a6d<rf(r)) 15/O ol ndr =15 | S5l (r)dr 5

Now, if we take the integral by part, and if we pay attention that f(r) is zero at the two
limits, then we get the next
8t [ rd
15 0 OéG

4
f(r)dr = —EK = k=-K.

Navier points out Poisson’s assumption that if f(r) is zero at the two limits. There are
many functions which don’t take such values. Poisson pays attention to all the case in
probability.

4.2. Attraction and repulsion.

Here, we show one of Fourier’s contexts which Navier depends on and esteems as the
authority of hysico-mathematicians.

(<) 954. The equilibre which keeps in the interior of a solid mass be-
tween the repulsive force due to heat and the molecular attraction is stable
; namely, which restablish by iiself, when it troubles by an accidental cause.
If the molecules are places in the distance which is convenient to the equi-
libre, and if an exterior force make this distance without the temperature
changes by the heat, the effect of attraction begins surpass it and makes
the molecules at the initial position, after a multitude of oscilation which
becomes more and more insensible. A resemble effect operates when a me-
chanic cause shortens the initial distance of the molecules ; this is the origin
of sonic or flexible vibration of corps and of all the effect of elasticity. [22,
pp.31-2] (trans. mine.)
11



TABLE 1. The kinetic equations of the hydrodynamics until the “Navier-
Stokes equations were fixed. (HD : hydrodynamics, N : non-linear, g.d :

grad.div, C': —==- in elastic or fluid. A : tensor coefficient of the main axis
in Laplaman.)
no 2?(1)1}16/ the kinetic equations Alg.d|C
Eul 1dp _ d
1 (11175?; X_lﬁj_i_ “+ud1+vd +wdz’ d d
. 14dp v u w o
N|ssypr |\ R =@ Tud +“dy+w StRt+E=0
fluid Z_%d_i: +udy +U +w(gj’
2 2 .
A ‘37+X) +(—§+Y) (§t§+2)3a ~ 92—,
A(FF+X )T+ (B+Y) R+ (5+2)%] -2 =0,
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sol. where II is density of the solid, q is acceleration of gravity.
d*u d 2 d?
pdm =X +6(3 dy2L + d22 +2dz;y +2dxdz)
du du du du
Navi —dt  dz U—d‘y'i}*a‘;'w
avier 1d;u_Y+e +3d L Ey ol g
4 (1827) pdy dz? da:dy dydz s |2¢ 1
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TABLE 2. (Continued from Table 1.) The kinetic equations of the hydro-
dynamics until the “Navier-Stokes equations” were fixed.

no Ei’:)r:/ the kinetic equations g.d
(12)s
Stokes | [p(Bt ~ X) + 32 — (i + G+ 0#) 4L (2 + 2+ 22) =0,
7 ((49)[87] Dv d 2 Py & d (du | dv o d 1
mua || BV E (e G g s g (e g ) =0 P10
d 2 2 2
PB -+ - n(E ) 4 (R i) -0
8 Prandtl
~ |(1905) p(‘;—; v vV) +V(V +p) =kV20, divv=0
[79], HD
Prandtl %+U%+U%+w% 2 2
ran _ 19 va (o el 3 e} el a?
9 | 1631 =X Ry (e g (T8 2+ 2, .
N [80], HD for incompressible, it is simplified as follows :
divw =0, pc% =g-— %gradp-H/Aw
10 slerf:r_lt (’43) fluid. He didn’t describe the equations in [84]. c
however his tensor is in Table ?? (entry no.4) 3
84]
(12)s
& 2 2 U UV
11(8’21%1;(;;7] A5t =)+ - (%+g‘7§+§7§)_%%(%+3—y+%):0’ g
Duv dp d%v v d*v v d{du dv d _ 3
DLV PRSP AP 5 SO PP S
fluid Dt dy dx dy dz 3 dy \ dx dy dz
D d d? a2 42 d(d d dw) _
P‘zﬁ*z)ﬂ“ﬁ—u(ﬁerd—yz*‘ﬁ)*%az(aer—ZﬂL—?) =0
du d d*u 42 d*u 1d {du d d —
Maxwell | | #38 T @ — Cm m+#+iﬁ+§ﬁ<%+d—z+d—fﬂ = pX,
(65.66) |1 0%+ % — Cuu[£3+ £5 + £3 1 1 (12 + 42+ 8] — v :
12 Y z Yy z x \ dz y Z ) c
3
n | lpsr-on[Bredr ety bt (i) =0z
where, Cpr = T"p%:
,u@%——aa——CK Au+li<—gﬂ+@+%) =uX
dt x 3 0x z oy z - ’
d ) R v | o
Kirchhoff|{ % + 2 — Cx A”+%55<£+5§+a—?) = Y,
13|CT6)[37] | | pdw 4 22— Az+§§-(g—u+-g—v+g—W) =uZ 3
HD z z x y 'z ’
1d a 2 dw _
;“# + % + 5*;1 + d—"; =0,
where, Cx = %%
Rayleigh [ (1dp _ 4 2 d d
Voo |8 7T
NHD ;a‘lﬁ:—d—gﬁ-UVU—ud—:f’uﬁ ® v
Boltz- p%%+§g—RAu+§-a%(g—g+§§+a—’j) = pX,
mani o) 3 10 (& v , 8 _ R
15 oy (@205 §p%+E-R Av+ 32 ( %+ g2+ 22)] =y, R
HD %+ E—R[Aw+ 12 (3124 au)] = pz
z z T Y z
16 Prandtl
N 519}05) p(%—;’ +v. vV) +V(V +p) =kV2, divv=0
79], HD
Ju du Ju Ju
Prandtl | 00 TV T Vo o o
- 1 va (o du | 0 9 e 9y
17| sy | =X 3% 55(5%+3—5+51§)+V(a#+@%+w)7 y
N [80], HD for incompressible, it is simplified as follows :

divw =0, %"-=g~%gradp+l/Aw
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5. FOURIER'S HEAT EQUATION OF MOTION IN FLUID

Fourier explains the motion of the heat in the interior of solid. The difference is that
determines its increment of the temperature during an instant with only the transfer of
heat quantity, which is the most different method with Poisson’s method :

dv dv dv
Kdydz d(@)dt + Kdzdz d(d—y)dt + Kdzdy d<a>dt

Pu v dPu
N Kdmdydz(aﬁ toat @)

then finally he gets :

(d)F25

du K <d2u d*u dQU) (5)

T 0D \d? T a2

where, K internal conductibility, C capacity, D density of the substance. [22, p.102]
We think that Fourier’s deductive method is very diffuse style and simpler than Poisson’s
inductive method described over 10 pages in original [77], we show his point below in § 6.1.
Fourier doesn’t show the pricise deduction of the heat equation (5), while Poisson takes
9 pages to descrive it from §44 to §50. We think Poisson’s contribution on the physical
mathematics such as the fluid dynamics and the heat theory including the trigonometric
series is great.

Fourier esteems Euler’s fluid dynamic equations, saying in the preface of “The analy-
sis of the heat motion in the fluid.” We cite Fourier’s English translated paper as follows

To solve this, we must consider, a given space interior of mass, for exam-
ple, by the volume of a rectangular prism composed of six sides, of which
the position is given. We investigate all the successive alterations which
the quality of heat contained in the space of prism obeys. This quantity
alternates instantly and constantly, and becomes very different by the two
things. One is the property, the molecules of fluid have, to communicate
their heat with sufficiently near molecules, when the temperatures are not
equal.

The question is reduced into to calculate separately : the heat receiving
from the space of prism due to the communication and the heat receiving
from the space due to the motion of molecules.

We know the analytic expression of communicated heat, and the first
point of the question is plainly cleared. The rest is the calculation of trans-
ported heat : it depend on only the velocity of molecules and the direction
which they take in their motion. [28, pp.507-514.]. (trans. mine.)

Fourier combines heat theory with the Euler’s equation of incompressible fluid dynam-
ics and proposes the equation of heat motion in fluid in 1820, however, this paper was
published in 1833 after 13 years, it was after 3 years since Fourier passed away. Fourier
seems to have been doutful to publish it in life. Here, ¢ is the variable density and 6 is
the variable temperature of the molecule respectively. K : proper conductance of mass,

C : the constant of specific heat, h : the constant determining dilatation, e : density at
14



( O e
Rt R talpple g yde X g

€ dx

1dp as ag dg ag —
;@+E+a%—:+ﬂd—y+75—3/-0,
1dp dy dy dry d _
ga+3+a—dg+ﬁd—y+’y£—2-_0.

Gt asea) ¥ (eB) +£(e7) =0, e=e(l+h).
2 2 2
WoE(fh oy g (L(at) + 2£(00) + 1(,0)].
where, a, 3, v, p, €, 0 are the function of z, vy, z, t. X, Y, Z are the outer forces.

We think, Fourier seems to feel an inferiority complex to the fluid dynamics by Euler and
he divers the Euler equation as the transport equation from Euler 1755 [17]. (cf. Table

L)

6. POISSON’S PARADIGM OF UNIVERSAL TRUTH ON THE DEFINITE INTEGRAL

Poisson mentions the universality of the method to solve the differential equations.
Poisson attacks the definite integral by Euler and Laplace, and Fourier’s analytical theory
of heat, and manages to construct universal truth in the paradigms.

One of the paradigms is made by Euler and Laplace. Laplace succeeds to Euler and
states the passage from real to imaginary or reciprocal passage between two, which we
mention in below.

The other contradictory problem is Fourier’s application of De Gua. The diversion is
Fourier’s essential tool for the analytical theory of heat.

Dirichlet calls these passages a sort of singularity of passage from the finite to the
infinite. cf. Chapter 1. We think that Poisson’s strategy is to destruct both paradigms
and make his own paradigm to establish the univarsal truth between mathematics and
physics.

6.1. The deduction of heat equations by Poisson.

Poisson deduces his heat equations of the motion in interior of solid corps or liquid,
from only §44-50. These are more precise than Fi ourier’s, though their result is the same.
Poisson’s method is based on the hypothesis of molecular radiation. It may come from
the fluid dynamics. For Poisson, the common method between the fluid dynamics and
the heat analysis is molecular analysis. While in the fluid dynamics, the function of the
distance is f(r), in the heat theory, the corresponding function is the function of the
distance, both the temperatures and both the coordinates, which is the expression (8)
introduced in §45.  We introduce the gist of the Poisson’s molecular analysis on heat
from §44 to §50, which are the Poisson’s sales point in rivalry to Fourier as follows :

§44.

There is always the heat in motion in all the corps, even when of all their points is
invariable,

e were each point would have a particular temperature,
e were its would have all a same temperature.

However, the expression motion of the heat is taken here, in the another sense ; it signifies
the variation of temperature which holds from an instant to the other in a corps which

is heated or is cooled ; and the velocity of this motion, in each point of the corps, is the
15



primary differential coefficient of the temperature with respect to the time.
I will call A the corps solid or liquid, homogeneous or heterogeneous, in which we are
going to consider the motion of the heat. Let

e M a certain point of A,
e and m a particle of this corps, of insensible magnitude (no. 7),
e and take the point M.

At the end of a certain time ¢,

e designate with z, y, z, the three rectangular coordinates of M,
e with v the volume of m,
e and with p its density,

so that we have m = vp.  Let also, at the same instant, u the temperature and U ! the
velocity of motion of the heat which responds to the point M.

The quantity u will be a function of ¢, z, y, z, dependent on an equation in the partial
differences with respect to these four variables, which it is the problem to form. If A is a
corps solid, and which we make neglect its small dilations, positive or negative, products
with the variations of u relative to time, the coordinates z, y, z, according to independent
of ¢, and we will have simply, U = i—?.

e If in contrast, we have regard to small displacement of the point M caused from
these dilations,
e or also, if A is a fluid in which the integrality of temperature, or all other cause,

hold to the motions of its molecules,

then the coordinates z, vy, z, will be the function of ¢ ; and then we will have with the
known rules of the differentiation of functions made of functions,'?

du drdu dydu dzdu
1 O= — 4 2~ hat:Ahoned Lo B 6
(Dpss i T Tatay T (6)

where, expression in which ‘fi—f, %, %, will be the components of the velocities at the

point M, parallel to the axes z, vy, z.

The unknown u will be the only that it will need to determine, for recognition completely
of the calorific state of the corps A at a certain instant. Suppose that we divide this corps
into two parts B and B’, with a certain surface, traced in its interior. Let w an element
of this surface (no. 9) containing the point M, there will be continuously, crosswise w,
a flux of heat sensible to that of the radiating heat which holds crosswise the element of
the surface of A, and that I will represent with I" w dt during the instant dt, of manner
which this product, positive or negative, were the excess of the heat which traverses the
w in passing from B in B', during this instant, on that which traverse in the same time,
in passing from B’ into the B. The coefficient T, or the flux of heat relative to the units
of time and of surface. will depend on the material and of the temperature of A at the
point M, and of the direction of w ; it will be important to determine it, in function of
t, z, y, z, for each direction given with w. Hence, u and I" will be the two unknown of
the problem of which we will have to us occupy in this chapter. When the corps A is obey
to the influence of foci constants of heat all its parts arrive generally, after a certain time,
to the variable temperatures of a point to another, however, independent of the time. In

this stationary state of A, the velocity U is zero in all the point ; however, the flux of heat
ll(ll) We use U, because, in origin, Poisson uses the vertical type of  like the opened shape in upper
of the numerical letter 8, however, this exact type isn’t in our LaTex font system.
12(11) sic. The function is repeated.
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I exists still, and merely its value is independent of ¢, like that of .
§45.

Let M" a second point of A very near to M, and m' a particle of A of insensible
magnitude, like m which will contain M’. At the end of time ¢, we call z’ .y, 2, the
coordinates of M’ in relating to same axes with z, y, z, and designate with 2’ the
temperature of m’ ; also let r the distance M M’.

According to the general hypothesis on which the mathematical theory of the heat
(no. 7) is based, there will be a continuous exchange of heat between m and m/. 1 will
represent with § the augmentation of heat which will result then for m during the instant
dt, namely, the excess positive or negative, during this instant,

e of the heat emitted from m’ and absorbed with m,
e over the heat emitted from m and absorbed with m/.

It will be able to suppose this excess proportional to product m m’ dt, or to v v/ p pdt,
in calling v" and o’ the volume and the density of m/, so that we would have m/ = ¢/ 0,
as we have already m = v p. It will be zero in the case of v/ = u, and same sign with the
difference u' — u, when it won’t be zero ; in the vacuum, it will come in the reverse ratio
of the square of r ; and generally its value will be the form

v

Grss 6= "2 R/ —u) dt, @

where, in designating with R a positive coefficient, in which we contain the factor o,
which will decrease very rapidly for the values increasing with r, which will be also able to
depend on materials and the temperatures of m and m’ , and will vary with the direction
of MM', when the absorption of the heat won’t be the same in all direction around of M.

In the supposition the most general, R will be hence a function of r, u, u’, and the
coordinates of M and M’ ; so that we will have

R=® (r, u, v, z, vy, 2z, o, 3y, 7). (8)

However, if we call & the dimension of heat of m/ during the instant dt¢, causing the
exchange between m and m’, we will have evidently &' = —4 ; in addition, the value of &'
will come to be deduced from that of § with the permutation of quantities relative to the
one of the points M and M’, and the analogous quantities which respond to the other ;
in consequence, it will need that the function ® were symmetric with respect to u and v/,
z and 2/, y and 3/, z and 2'.

The corps A being a solid or a liquid, this function ® will vary very rapidly with r
and will be insensible or zero, as long as r will have arrived at a very small magnitude. I
will designate this limit with /, so that this function ® were zero, as long as we will have
7 > 1 or merely r = [. This segment ! will be hence very small, however, of the sensible
magnitude and measurable (no. 41), and in consequence, extremely greater with relation
to the dimensions of m and m/'.

§46.

The total augmentation of heat of m during the instant dt will be the sum of values of
0, extended to all the point M’ of which the distance at the point M is smaller than [. I

will indicate a such sum with the characteristic ¥. The factor v dt being common to all
17



the value of §, their sum will be
R
v dt — (v —u) V. 9
vdl >y — W ) (9)
However, during the instance d¢, the temperature of m augments with U dt ; if hence, we

call ¢ its specific heat, ¢ v U dt will be also its augmentation of heat during this instant :
hence in suppressing the common factor v dt, we will have

(3)psa cU= Z g (v —u) V. (10)

for the equation of motion of the heat equally applicable to a corps solid and to a liquid,
in substituting the convenient expression with U.

The sum ) contained in this equation, doesn’t depend in effect, merely on the
calorific state of m and of the particles surrounding with A, which exists at the end
of the time ¢, and in any manner of change which would be able to hold the next
instant ; so that it wouldn’t be necessary to the heat, like the mathematicians® have
considered, a particular equation for the motion of the heat in the liquids®, distinct
from one which responds to corps solids heterogeneous, and which had been given
since long ago.

%{) F. geometricians. Now, it means mathematician.
®({) Poisson may cite as the mathematician Fourier [28].

The value of a sum ) relative to the particles of insensible magnitude, such that the
preceding, can be explained with a series of which the primary term is a integral taken
between the same limits which this sum, and of which the other preceding terms follow-
ing the dimensions of these particles, raised to the increasing power. These dimensions
being insensible with hypothesis, it is followed that the series is, in general, extremely
convergent, and may be reduced to its primary term. Hence, in designating with d v/ the
differential element of the volume of A, which responds to the point M’, we will have,
without appreciative error,

R k
E —2(u’—u)v’:/—§(u’—u) dv’ ;
r r

The integral is extending to all the element dv/, of which the distance r at the point M
is smaller than [.

In effect, I remarked in other occasions which the reduction of a sum to a integral is
no more permitted in a certain case which is presented, for instance, in the calculation of
molecular forces ; however, for that this exception would hold, it needs that the function
of which we are going to sum the values, varies very rapidly and change the sign between
the limits of this sum ; hence, here the coefficient R vary well in effect very rapidly with
the variable r, however, without never change of sign ; and for this reason, the exception
of which it is important isn’t to be afraid. In all the calculation of quantities of heat which
result of exchange between the particles of a corps, of insensible magnitude, we will be
able to decompose immediately its volume in elements infinitely smaller, and replace the
sum with the integrals, as if this corps being would be formed of a material, contained
and not of the disjoint molecules, separated with the pores or vacant space.
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§47.

Of the point M as center and a radius equal to the linear unit, we describe a spherical
surface ; were ds the differential element of this surface, to which gets, the radius of which
the direction is that of M M’, we will have

dv' =72 dr ds ;

and according to the value of the sum ), the equation (10) will turn out

(4)pss d“ (v — ) dr ds ; (11)
-J/ =

We put here, for abridgement, & S5, instead of U ; however, we will remember that this
differential coefficient needs to be taken with relation to ¢ and to all this that depend ;
so that it needs to replace % < with the formula (6), when the coordinates z, y, z, of the
point M will vary with the time.

The limit relative to 7 of the integral contains in this equation (11) won'’t be the same,
according to the distance of the point M to the surface of A will surpass I or will be shorter
than this small segment. In this chapter we will suppose that this were the primary case
which holds ; the integral relative to r will come to be hence taken from r = 0 to r = [,
in all the direction around M ; we will be able hence to describe the equation (11) under

the form
Grse e — /Ol[ [ro-was ar (12)

where, the integral in respecting to ds will come to be extended to all the element ds
from the spherical surface, and with the reduction in series, we will obtain easily the
approximate value.

§48.

For these things, I designate with «, [, -, the angles which the segment M M’ makes
with the parallels to the axes z, y, z, traced through the point M. Because of MM’ = r,
then it will result

¥ —x=r cos a, y —y=r cos f3 7 —z=r cos 7v;

and, according to the theory of Taylor, we will have

! Y cos a+ du cos O+ du T COS
U —uUu = T [6% - T -

dz dy dz 7
1 d%u 1d? 1d?

+ 372 r? cos® a+ §—dy7; r? cos® B+ §—d1; r? cos® v
d? d? d?

+ %02 cos a cos 5+ Yo COS « COS v+ Y2 cos (3 cos vy

dr dz dy dz

dr dy

If we develop similarly R in accordance with the power and the products of v/ — u, 2’ —
z, ¥ — vy, 2 — z, we will have also

=+ (8 000 (4 ¢ (2 - () 0
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where, the parentheses indicating here that it needs to put ' = w, 2’ =2,y =y, 2/ = z
according to the differentiation which supposes r invariable, and V' designating this which
comes at the same time from the function ® of the (no. 45), so that we have

V=&(r u u oy, 2 z, v, 2). (13)

By means of these developments of R and of u’ — u, this one of product [ R (u' — u) will
be composed of terms of this form

, , ”
H 7™ cos" a cos® 3 cos® 7 ;

where, H designating a coefficient independent of o, 3, 7, and the exponential 7, i/, i,
being the number entire and positive which won’t be zeros all the three to the times, and
of which the exponent n is the sum i + ¢’ +¢”. Hence in having regard to the limits of the

integral relative to ds, we will have
/ cos' a cos’ 3 cos” v ds =0,

here all times which the one of the three numbers i; 7', i”, will be odd ; for then this
integral will be composed of the elements which will be equal two by two and the contrary
sign. When any of number 4, ', ", won’t be odd, the integral won’t be zero ; the ordinary
rules give the exact values, whatever these three number ; and with this manner, we will
have

(6)pss R (W —u)=Hyr*+ Hyr* + Hor5+ - ; (14)

where, Hy, Hy, Hg, ---, being the differential function of known form, in any of which
the partial differences '* of 4 will be taken with respect to z, Yy, 2, and are raised to the
order marked with its inferior index.

For a temperature v which would vary very rapidly, so that it would have the values
very different in the extent of interior radiation, the coefficients Hy, Hy, Hg, ---, would
form a series very rapidly increasing, by reason of partial differences '* of u on which they
depend. The series (14) would cease hence to be converged, though the smallness of 2
; however, this case doesn’t hold in a point M sufficiently separated, as we suppose it,
of the surface of A ; and we will be able, in consequence, to regard the series (14) as
extremely convergent.

In stopping at its nth term, the equation in the partial differences '® of the motion of
the heat will be the order 2n ; however, its complete integral will include certain parties
which will vary very rapidly, and that we be will be able to suppress for this reason, in
the value of u, as a layperson to the question ; this one which will reduce always this
value at the same degree of generality, whatever its degree of approximation, dependent
on the terms of the series (14) which we will have conserved.

13(1}) id. This mean the partial differentials.
L) id.
B(y) id.
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This is here which we see successively, on a particular example, in which we will
show also the influence which can have the sensible extent of the interior radiation
on the value of u. However, to reduce the general equation of the motion of the heat
to the simplest form, namely, to the form of an equation in the partial differences @
of second order, also which we make ordinarily, we restrict the approximation to the
primary term of the series (14) ; this is here which return to consider as insensible
the extent of the radiation in the interior of corps solid and of liquid.

2(4) id.

849. (General equation of the motion of heat) 16

In this hypothesis, we will stop the development of R at the terms dependent on the
square of r exclusively. By reason of the system of R in respect to v and v/, x and 2/, y
and y', 2z and 2/, and of this one which V represents, we have evidently

(d_R):lﬂ (@)_mv (dR)_ldV (dR) 1dV
du’ 2 du’ dz’

“2a \ay) ey @) Taa
then, it will result hence
1dV 1dv 1dV 1dv
=V +-—— (v - —— (2~ ——— (y — e G
M=Vt ga W Wt gy o0t gy 5 (-2

and of this value jointed to that of « — u, we will conclude

i, - g{v%+(%j_;+%)j_;J/coszads+;[v§i;+(%j_z+%)j—g]/cos2ﬁds

or more simply

1 2 1 2 d
Hy = —[Vdu—l—dvcgu]/coﬁozds—k—[\/g—# Vdu}/coﬁﬁds

2l da? " dz dx 2L dy2 " dy dy
Ir. d®u  dVdu
|y == __] 2 ds -

+ 2[ dz2+dzdz /Cosfé’

the partial differences ! of V with respect to z, Y, z, being taken in considering u as a
function of these three coordinates, and without varying r.
We have additionally

/COSQ(]( ds = /coszﬂ ds = /00827 ds.

Moreover, if we call ¢ the angle which makes the plane of the segment MM’ and of a
parallel to the axis of # traced through the point M, with a fixed plane traced through
this parallel, we will have

ds =sin a do di
16(

|}) This article is the most frequently referred from other article, such as 52, 58, 64, 68, 70, 76,
85, 89, 117, 119, 120, 137, 162. (These are the article numbers, referred to the no. 49, and in the bold
numbers, the another equations are expressed.)
M) id.
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and the integral relative to ds will come to be extended to all the spherical surface, to
which this element belongs, then it will result

g 27 4
/cos2oz ds:/ cos” o sin ada/ dz/;z%.
0 0

' Hence, in reducing the value of [ R (u/ — u) at the primary term Hy r2 of the series
(14), the equation (12) will come to be

du 2r (d?u [t du [tdV 2 (d?u [t du [tdV
U " “3‘(5;5/0” ), dr)+?(ry2/o‘““ At | gy )
2 (dPu [t du [dV
—(55 dr+— [ == % dr). 1
N 3(dz2/0VT T+dz/0 =) (15)

The function V' being zero for all the value of 7 longer than [, we will be able to now
extend the integral relative to r beyond this limit, and if we want to be until r = co. If
we put also

2 >0
il Vr?dr =k, (16)
3 Jo
where, k will be a function of u, z, y, z, and we will have
2 (% dV Qd_dk g@/c’odV Qd__dk 2_7r/°°dV
0 0

dk
3 de “Taw 3, @ “T@w 3) @&

2
dr = 2%
" dz’

in consequence, the general equation of the motion of the heat will come to be finally

du  dk%  dk%E g
7 R dz Y dz )
Drse e =0t 0 T a
When all the point of A gets to a stationary state, we will have ‘;—1‘ =0, and then
it will result

(17)

du du d
d.k5: N d-kdy N d.k<:
dx dy dz
for the equation relative to this stationary state.

:O,

19
§50.

The equation (17) coincides with that which I found in years ago for the case of a
heterogeneous corps *°, however, in never supposing hence that the quantity k depended

18(1)) According to [56, p.41, no.277],

cos™ 1 ¢
m+1

/cosmw sinxdr = —

19(4}) The expression (15) is reduced into

du d?u du dk du du dk d?u du dk
e (B ) (e ) (e
dt dxz? dz dx dy? dy dy dz? dz dz
sic. Journal de I’E cole Polytechnigue, 19° cahier, page 87. ({}) Poisson [64], [76, p. 677].
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on the temperature u.
If A is a corps heterogeneous,

e k will depend only on w,
e and the equation (17) will be changed as follows :

du <d2u d?u d2U) dk (du2 du? du2). (19)

8 gy A e T L
(&)pss ‘it dz? + dy? + dz? du \dz? +dy2 + dz?

*! In supposing that this quantity k were independent of u, we could have the equation

du Pu Py Pu
(9)psa k( ),

e
dz?  dy?  dz?
* which we give it ordinarily, and which is reduced, in the case of the stationary state, to
an equation independent of two quantities ¢ and k, viz.,

v Pu du

dx?  dy?  dz? (21)
23

After obtained the equation (20), in considering ¢ and k as the constant quantities,
we could suppose

e that it will conserve the same form when these quantities will variable,

e that it will suffice to put here for %- a function given with wu,

e and that the equation relative to the stationary state doesn’t receive any
change.

However, it is seen that these suppositions are never admissible ; the equation (20)
and here one which is deduced in the case of % = 0, were never, in the same case
of a homogeneous corps, the exact equation of the motion of the heat and that of
the stationary state ; and the formula (19) shows that the independence of partial
differences ® of u of the second order in respect to z, y, z, the true equations need
also to contain the square of its partial differences ° of the primary order.

Y(y) id.
b(U) id.

To have regard to displacement of points of A, products with the dilations and conden-

sations due to variation of the temperature, or from another cause, we will replace, as we

mentioned above, 2 with the formula (7), and the equation (17) will come to be

(e dude dudy | dudzy ik ARG dkg

dt  dedt dydt dzdi dx dy dz
21(}}) Because of k = k(u), from each second terms in the right hand-side of the expression (18) is

reduced into

du dk du dk du dk du du dk du du dk du du dk dk rdu®  du?  du?

(@) (Ga)t Ee) - Gea) - Gaa)  (Gaw) )

drde) " \aydy) "\dedz) " \dwdean) " \@ydyan) Ttz drda) T du\d? T @z T a2

(10)psa (22)

22(|}) The equation (20) means ¢ = kAu, where A meaning the Laplacian.
23({}) This function u satisfying the equation (21) is called harmonic function. Poisson doesn’t mention
the harmonic function, however, Poincaré {78, p.237] calls it so. cf. Table. 1.
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Here is this equation (22) which we will come to joint, for instance, to the ordinary
equations of the motion of liquids, to accomplish it, hence that I proposed already in my
Study of Mechanics® and in a preceding memoir. 2

Poisson puts also the another heat equations 26 and in a preceding memoir. 27

7. PART 2. THE DERIVATIVE PRODUCTIONS OF CLASSICAL HEAT ANALYSES

7.1. Detail items. the derivative productions of classical heat analyses.

1. We discuss historical development of the particular value in the wave analysis,
including Prévost 1792 [81], Physico-Mechanical Researches of the Heat, Fourier 1822
[22], Analytic Theory of the Heat, and Poisson 1835 [77], Mathematical Theory of the
Heat and finally Poincaré 1895 [78] Analytic Theory of Propagation of Heat. 2. In
this 18-19 century, the conception of continuum is introduced at first by Laplace, many
mathematician challenge the physico-mathematical problems. One in Prévost’s essay on
heat is the communication theory of heat, which becomes Fourier’s main and initial motif
in his scholar life. 3. After Laplace, Fourier and Navier, et al. participate in these studies,
and Fourier puts forth the trigonometric series in the process of building the heat theory,
including communication theory and the theory of heat motion in fluid. 4. In the rivalry
with Fourier, Poisson puts forth his personality independent of Fourier, the digressions
on the mathematics : these are his characteristic, namely, on the mathematical analysis
of the integral, the partial equations, and the trigonometric series. Poisson traces many
historical facts of the origins of the wave equations including the trigonometric series by
the trailblazers such as Euler, Lagrange, Laplace, Fourier, etc. 5. Poincaré puts forth
many conceptions of pure analysis to solve the flux of heat from the viewpoint of up-to-date
mathematical physics such as theory of Dirichret, theorem of Abel, theorem of Cauchy,
theory of asymptotic value, theory of singular points, theory of holomorphic function,
meromorphic function, etc. 6. We talk about the derivative productions of classical heat
analyses such as particular value and eigenvalue, trigonometric series and its convergence,
linear integral equation, meromorphic function, terrestrial system, or meteorology, etc.
from the widely comparative viewpoint in the history of mathematics or mathematical
physics.

24(\) Traité de Mécanique, op. cit. cf. Poisson [59], [75] and [76].

25(&) Poisson puts also the another heat equations such as in Chapter 6. entitled : Digression on the
integral of the partial differential equations. §76. [77, p.146], or Chapter 11. entitled : Distribution of the
heat in certain corps, and specially in a homogenecous sphere primitively heated with a certain manner.
§162. [77, p.347] :

u u  d?u d? k
(1) ps11 dgt— =a? (%5 a2 + ;Z—ZZ), o= a2, = (;—1; =a’Au. (23)
where, u is the heat, k£ and ¢ are the conductibility and the specific heat of the material. A is the
Laplacian.

26(1)) Trasté de Mécanique, op. cit. cf. Poisson [75, 76],

27(1}) Poisson puts also the another heat equations such as in Chapter 6. entitled : Digression on the
integral of the partial differential equations. §76. [77, p.146], or Chapter 11. entitled : Distribution of the
heat in certain corps, and specially in a homogeneous sphere primitively heated with a certain manner.
§162. (77, p.347] :

du 5 (d*u  dPu dPu k
1 = (Gt mts)  S=a 24
(1) ps11 PR + iy + 72 - =a (24)
where, u is the heat, k and c are the conductibility and the specific heat of the material.
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TABLE 3. The five books and one paper on physico-mathematical theories

of heat
Prévost Laplace Fourier Poisson Dirichlet Poincaré
Name [1792 [81] 1818 1822 [22] 1835 [77] 1837 [14] 1895 [78]

(1751-1839)  |(1749-1827) (1768-1830) (1781-1840) |(1806-59) (1854-1912)
Uber die
Darstellung

Recherches Théorie ganz

husico- Traité de Théorie mathé- willktrlicher | Théorie analytique
1{title ]r)n,éycani ves mé canique analytique matique Functionen |de la propagation

7 céleste de la chaleur |de la durch Sinus-|de la chaleur

sur la chaleur
chaleur und
Cosinus-
rethen
[22] 541
gtotal logy except for [77] 552 [14] 26 314
page contents
[23] 641
zzglrﬁum- - check on introduction of
thel(;) Fourier’s - Dirichlet principle,
o 1ry method - harmonic function
;laitit mathemati- |- theorem of |- the methods
. 4 Y many - heat theory | cally with | Dirichlet by Fourier, Laplace,
point/ | of heat . . . ;
. mathematical |- trigonometric| another - proof of Cauchy, Riemann
merit | depends on )
concepts series method convergence|- analogous
the heat . . . .
. - proving of the series| equations with heat
communi- ;
. convergence such as the equation
cation, . .

. of of cord vibration,
not with series telegraph
temperature grap

introduction of
. various conceptions
continuum like -
theory to the |- trigonometric .
. ) - integral equ.
. hydrodynamics| series after )
to Fourier’s . . , |- harmonic func.

. . & heat followers until |to Sturm to Poincaré .
contri- |communi- . .. - holomorphic func.
. . dynamics now and - Dirichlet .
butions|cation . . .. L. - meromorphic func.

like Fourier, - molecular Liouville principle .
theory : - spherical func.
Navier, theory to .
. . - spherical
Poisson, Navier .
. . trigonometry
Poincaré .
- spherical
polynomial
1805 [18],
- Mémoire 1808 [10],
du fluzx et 1816 [19], 1808 [58],
other du refluz, 1824 [24], 1823 [67], 1829 [19]
5| relative 1790 1826 [25], 1823 [68], 1830 [13]
papers - Connaisances | 1827 [26], 1823 [69],
des Tems, 1829 [27], 1824 [70]
1823 1835 [28],
1890 [11],
Poincaré
Poisson {77] 1895 check on Fredholm [29)] refers
6|remark |introduces [81] doesn’t Fourier’s on Poincaré’s
as an essay mention proving harmonic function
25 this at all




TABLE 4. The function, theory, law and introduction of preceding work of heat

Prévost Laplace Fourier Poisson Dirichlet Poincaré
Name 1792 [81] 1818 1822 [22] (1835 [77] 1837 [14] 1895 [78]
(1751-1839)  |(1749-1827) |(1768-1830)|(1781-1840) (1806-59)  |(1854-1912)
Uber die
Darstellung
Rech'erches Traité de Theom'e Théorie ganz Théorie analytique
. physico- , . analytique , : willkiirlicher .
1ftitle ;o mécanique mathématique . de la propagation
mécaniques ! de la Functionen
céleste de la chaleur ; de la chaleur
sur la chaleur chaleur durch Sinus-
und Cosinus-
reihen
theorem of Fourier
Lagrange theprem of Cauchy
9 Theory/ Lagrange La,gl f Bessel
theorem Laplace F prac theorem of Dirichlet
ourier Dirichlet condition
theorem of Abel
Taylor ()Newton
Lagrange
Taylor
law(1)/ . Laplace
Laplacian, |Lagrange . Laplace
3|formula/ Fourier .
. Laplace equ.|Laplace . Fourier
notation(n) Poisson equ.
: Green
Poisson brachet (n)Halphen
(n)Legendre p
Biot Laplac
introduction Biot Jakob Bernoulli Fotll)r?ef
4|of preceding Laplace Prévost 1792 [81]
- Cauchy
work of heat Poisson Laplace
. Abel
Fourier
€43-4 theorem of
Abel and its
application
. . q 57 Integral
three digressions .
th Heat transf 71-91 of Fourler
fath- ;reatb transier trigono- - I71-91. 1829 [12] q 62 fooo w1(y)
ematical independly . - 992-104. sin o'y
) metric 1830 [13] =24 dy
consider- of the series - 4105-115. 1837 [14] X
ation temperature cf. Remark in the 1 337 urlnquenetss
out of Table ?7. Ot developmen
9§ 136 ([ RU;dr
=0, Vi<n
€ 157 condition
of Dirichlet
numerical inequality of
calculation q v
6 temperature in
o day/year /place
experiment Y7y
. . - molecular
Quan.tlty of ) trlg(?no- radiation - electric wave
heat is only metric .
. . - terrestrial heat - telegraph equ.
concerned in . series . . . .
- continuum including proving of |- pure mathematics
the transfer - heat .
7|newness - molecular . sterate heat Fourier’s such as
of heat. . equation .
action atmospheric unproved - holomorphy,
Temperature - heat
- IO heat - meromorphy,
isn’t concern- diffusion
ed in it equati solar hear - ete.
’ quatigg . mereorology




8. THE ORIGIN OF EIGENVALUE PROBLEM

Euler 1748 [16] says the height of the vibrating cord is calculated by the linear, first-
ordered expression as follows :

2 3
y:asinﬂ+ﬁsin—7m+'ysin—ﬂx+--- (25)
a a a

Lagrange 1759 [44] descrives as the introductional expression of the trigonometric series
by P, and @), as follows :

2 3 -1
Py = Visin 22 & Vasin 2 4 Yysin 2 44 Yy sin P DV (26)

2m 2m 2m 2m
where, (), has the same linear, first-ordered combination with coefficients Vi, V,, ---
instead of Y;, Y5, ---. The indicies of P and @) show simply the waleur particulicres

(eigenvalues) of v which (the valeur particulieres) belong to them (P, and @Q,, respec-
tively). [44, pp.79-80] (trans. mine.) Remark. Lagrange’s w is equal to 7.  In (25),
we can see in case we assume ¢ = 2m and «, 3, 7, --- areequal to Y7, Y5, Y3, -- -, then
r = v in Lagrange’s P, in (26) or Q, reffering to valeur particulicre (eigenvalue), namely
(25) = (26).

9. THE DERIVATIVE PRODUCTIONS OF CLASSICAL HEAT ANALYSES

9.1. La valeur particulicre and the eigenvalue.

We confirm the identity of valeur particuliere with the eigenvalue. We would pay atten-
tion to the historical fact that it has been developed for the linear differential equation on
the heat deffusion, or the trigonometric serirs and eigenvalue problem in the analysis in-
cluding string or sonic oscillation, the rapidly changing (decreasing/increasing) function,?®
and the process redefined of the eigenvalue by Hilbert in 1904.

e We think the eigenvalue is translated from la valeur particuliere into German word
der Figenwert by the Hilbert 1904 and is expatiated by Courant-Hilbert 1924 [9].
The word eigenfunction is combined corresponding to the word : eigenvalue.

e In the bibliographies of the earlier centuries, for example, Lagrange 1759, Fourier
1822, Poisson 1823, 1835, Cauchy 1823, Sturm 1836, Liouville 1836, Poincaré 1895,
et al. use la valeur particuliere. Sturm and Liouville owe to Poisson’s preceding
works of now so-called Sturm-Liouville type differential equation of the second
order.

e In the first English translation of Fourier’s main work [22], Freeman 1878 [30] uses
‘the particular value’ to all the over 43 original words in this book.

o Wilkinson 1952 uses eigenvalue without using the other English word : proper
value or particular value in recognition of its nomenclature of eigenvalue.

e Today’s French word : la valeur propre, used by Chatelin 1988, et al., may be
reimported from German Eigenwert after Wilkinson’s English word eigenvalue.

e The then French usage of la fonction particuliere / le espace particuliére corre-
sponding to the eigenfunction / eigenspace / eigenvector aren’t distinct in these
days, however, the correspondency between the eigenvalue and the function is
visible, for example, such as the expression in Poisson [77] or Sturm [89] or the

28¢f. We cite the rapidly changing function in §48 of 6.1.
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expression in Liouville [47], in spite of the fact that its usage aren’t so distinct as
after Hilbert.
e On the other hand, the word valeur caracteristique aren’t used as the eigenvalue.
e At last, we can recognize Euler 1748 on the cord vibration as one of the origin of
eigenvalue problem. It is because the two equations (25) and (26) are the same.

10. THE CARRIED-OVER TO THE NEXT CENTURY UNIFYING THE LEGACIES IN THE
191TH C.

In 1878, ten years earlier than G. Darboux, A. Freeman [30] published the first
English translated Fourier’s second version 1822. To this work, Lord Kelvin (William
Thomson) contributes to import the Fourier’s theory into the England academic society.
2 The microscopical description of hydromechanics equations are followed by the de-
scription of equations of gas theory by Maxwell, Kirchhoff and Boltzmann. Above all,
in 1872, Boltzmann formulated the Boltzmann equations.  After Stokes’ linear equa-
tions, the equations of gas theories were deduced by Maxwell in 1865, Kirchhoff in 1868
and Boltzmann in 1872. They contributed to formulate the fluid equations and to fix
the Navier-Stokes equations, when Prandtl stated the today’s formulation in using the
nomenclature as the “so-called Navier-Stokes equations” in 1905 , in which Prandtl in-
cluded the three terms of nonlinear and two linear terms with the ratio of two coefficients
as 3 : 1, which arose from Poisson in 1831, Saint-Venant in 1843, and Stokes in 1845. From
Fourier’s equation of heat, Boltzmann’s gas transport equation is deduced. (cf. Table 1,
2).

11. POISSON’S CONTRIBUTIONS

Poisson contributes in making his paradigm to the fluid dynamics and heat theory
are as follows :

e He presents the ‘two constant theory’, which we assert,*® as visible in the Navier-
Stokes equations in 1831. After this, Stokes follows Poisson’s equation in 1849,
and Prandtl declears these equations as the 'Navier-Stokes equations’ in the top
of the twenty century.

e He proposes the alternative method of the definite integral, 3 instead of making
the universal method of it, since by Euler, Lagrange and Laplace.

e He evaluates the trigonometric series by Lagrange as the original and analytical
series and which is enhanced and succeeded to the Fourier’s series.

e He shows the heat equation by deducing precisely, although Fourier’s series is
the first, however, its introduction isn’t deducing such as Poisson’s or without
demonstration.

e Although his approach dues to the rivarly to the Fourier’s theory, it brings up
the derivative productions of the another solutions or thinking in making many
breakthroughs to Fourier’s method.

12. GENERAL CONCLUSIONS

1. We consider our problem as the totality among the definite integral, the trigono-
metric series, etc., for Poisson’s objection to Fourier is relating the universal and

29A Freeman puts the name of W. Thomson in his acknoledgement. cf. [30, erratal.
30(}}) cf. Section 10, and Table 1, 2.
3L(Y) f. [60], [76, pp.347-368] and [77, pp.129-182].
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TABLE 5. The family of eigenvalue/eigenfunction. Rem. (-) : frequency
used. n+ : more than n. B2 : fonction harmonique by Poincaré. e.v.:
eigenvalue, e.f.: eigenfunction, e.s.: eigenspace, Ew : Eigenwert, Ef : Eigen-
function, Er : Eigenraum, numberless A and B : using implicitly.

(A)proper
. value . indole value e.v.
no|English (B)pr(.)per particular value indole function [e.£. /e.s. remark
function/
space
valeur o valeur (B2)
valeur particuliere, . .
French PTOPYE, 6 netion particuliere chargctenshque fonction
function N function harmo-
/espace particuliere o .
propre characteristique nique
Latin value indole
function indole
German Ew,Ef{/Er
1 [Lagrange 1760-61, [39] (A:1+)
2 [Laplace 1782, 85 [40] (A:5+)
3 |Lacroix 1800 [38] (A:4)
4 |Fourier 1822 [22] (A:43+, B)
1808 [58] (A:3),
. 1823 [68] (A:18),
5 [Poisson 1831 {74} EA:?—F)),
1835 [77] (A:45, B:1)
1815 [5] (A:1)
6 |Cauchy 1823 [6] (A:5)
1823 [7] (A:6)
7 |Gauss 1830 [31] cf. [48]
1836 [88] (A:6),
8 [Sturm 1836 [89] (A:3, B)
9 |Liouville 1836 [47] (A, B)
Freeman 1878 [30] (A:43+)
10{(translation of (translation of
Fourier[22]) Fourier [22])
11{Poincaré 1895 [78] (A:1) 33255?8]
iben Io0T
Courant-
13 Hilbert 1924 [9]
14|Schrodinger 1926 [85, 86]
15|Gerschgolin 1931 [32
16{Wilkinson 1952 {91
17|Chatelin 1988 [§]

fundamental problem of analytics, as we show Poisson’s analytical /mathematical
thought or sight in the Chapter 6, etc. In fact, Poisson’s work-span covers them.
2. Fourier doesn’t show the pricise deduction of the heat equation (5), while Poisson

takes 9 pages to descrive it from §44 to §50. The diffefrence between Fourier
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and Poisson is the common kernel function of molecular distance, which Poisson
manipulates in both fluid motion and heat motion.

3. Boltzmann’s concept of collision and transport with entropy and probability are
treated as the classical quantum mechanics. In this sense, Fourier’s communication
theory and the equation of motion in the fluid stand on the communication point
between the classical mechanics and new quantum mechanics by Schrodinger.

4. Owing to the arrival of continuum, we are able to discuss the solution of the
problem on the continuous space of mathematics. As Duhamel [15] says, at first,
Poisson performs it with the concept of mathematically infinite continuity. This
allows us to discuss, without depending on the microscopic-description, by the
vectorially description, like Saint-Venant, Stokes.

5. Although the confusion of knowledges on continuum, the unity in the mathe-
matics are gained, however, the applicabilities of the unite or general equations
are then not yet defined, which comes from the misunderstandings interphysico-
mathematics, such as the identity of fluid and elasticity, or, fluid and heat.

6. Sturm-Liouville type differential equations of heat diffusion problems [47, 88] are
redefined by Hilbert [36] using the second order differential operator £ and as the
EigenWert problem translating from the traditionally used nomenclature la valeur
particuliere.

7. About the describability of the trigonometric series of an arbitrary function, no-
body succeeds in it including Fourier, himself. Up to the middle of or after the 20th
century, these collaborations are continued, finally in 1966, by Carleson proved in
L?, and in 1968, by Hunt in L?.

13. EPILOGUE

Poisson |77, pp.411-415] expects the earth warming before the Industorial Revolution
32 up to 17 years after. According to his speculation, in using this average rate of the
increment per a year is 0.22°C, then we can estimate with this increment rate up to this
year 2015, just at the COP21, the temperature rises between 198 years, 2.447°C' as follows

11,950 — 11.730 0.22
198 = oo x 198 = 2.47T°C.
T2, 17.58333

This is what is called the reason of the consensus about the increment of the earth warming
in the world.
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