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H. Weyl OBIF (1936-1938) (from a biographical article [B1]):

In 1933 Clifford was awarded his doctorate for his dissertation entitled Arithmetic
of Ova. (HH&) After the award of his doctorate, Clifford became a member of the
Institute for Advanced Study in Princeton. He remained there for five years and during
this period, from 1936 to 1938, he was Weyl’s assistant. This was the time when Weyl

was writing The classical groups and he wrote in the Preface:

If at least the worst blunders of expression have been avoided, this rel-
ative accomplishment is to be ascribed solely to the devoted collaboration
of my assistant, Dr Alfred H. Clifford and even more valuable to me than
the linguistic, were his mathematical criticism.

Weyl’s influence is clearly seen in Clifford’s papers in 1937 Representations induced in

an invariant subgroup. (33X |4], [5]) In these he considered the representation induced

on a normal subgroup by an irreducible representation of the group. (%)
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1933. [1] A system arising from a weakened set of group postulates

Clifford D% [4], [5] (Z:F B L7=Bhid.
B2 IHIERDO S S BEAECRVBAATVS. THEEOHOEKS {Crlnx1 TP
RRIFEFR Goo 1= limy 00 Gy #E X5 :
Gi1CGeC- - CGC+ - CGxo-

ZIT, G DHA G, 2EAD. G, OEKERE 7, DHIE Xy, 1XFIESE [r] € Gr &
R&ET 3. BEREROH {xx. ; [7] € Grnon=12,..} CHLTn > oo D& EDW
SEEF IR im0 X, EEELT, B Goo OREDEIELOMEEHTD. 35
iZ, Gy ORBEEHRORDVICHEXR+ZEA CRABOMEERTS.

$ % H Clifford AL [4], (5] WEB L X~ 28I, X0 (1), (2) ThH5:

(1) &G, OIXTOBHFERAZBRT 2HEESADHI &,
(2) WERBFLSMO HERBELHLEERTIRMEEZ L.

1933 [1] A system arising from a weakened set of group
postulates

[1] A system arising from a weakened set of group postulates, Ann. Math., 34(1933), 865-871.
(. ZoO&HXZE, #%BD semigroup DHRANDBRIID—HTH A 5.]

BHE2ERTOINEREERTS. KA G ITHLT,

I. GIZI2HEENSHS : GxGd(a,b)—~ab=ced.
II. #ARMBKITS: (ab)e = a(be).
L PR EBH 1 DOEEMITTAHS : JecGst. VaeG, ea=e.

EXOFEAICEL T, RO4BEORENEZES .

IVL. (52D EHFE)Va € G, VEBNITT e, ICHL T, 2H<EDH1DOEHNT D
MNEETS: ba=e.

IVR. (BETTOFHE)Va € G, VEBRIITL e, ICHLT, P<EH1DOEHT b
MEHETS . ab=e

VL. (B0 FE)Va € G, LIR<EHB T DDER T e, IKHLT, 2K &ED
1 DOEHT b BFEFETD: ba=e.

VR. (BERD ‘FE)Va e G, PR EB 1 DOEENT e, KHLT, Pi<&ED
1 DOEHEIL O MEETS: ab=e.

& "R (LILILIVL) 3EEEHT 5.

EE1. RERELT, LI UL IVRY, I 1L 10, VL), (1, 1L, 11, VR) 2 EWCE
ETH2.

S8, (I 1L III IVR) = (I, 11, III, VR) 3D T,
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1933. [1] A system arising from a weakened set of group postulates

() (,ILII VR) — (L II, III, VL),

(i) (LIL I, VL) — (I, IL, III, IVR),
2R, <2-&—E0LT2MAREICRS.

(i) DEEH. Vae G, < EDB 1 DOERNIT e, IKMLT, 2A<EDB1DOLHEY
T OMNEE: ab=e. FIT, ba=:c &BLE&,

baba = ¢2, bea =%, ~ba=c?, ..c=c?

dEcDLIDDAEHTETDE, ed=2¢ (¢ 131 DDEESIT),

ed=cld = e =ce.

Vie GRHMLT, cx=celr=e€z=2x, PRIT c TEREIIT. £oT, ba=cld (I,
11, I, VL) % &%7 5. [() & 7]

(ii) DFLER. Va e G, 2 EDB1DOEREMT &, ITRHLT, 2E<ED1DDE
Wt b WEETD : ba=e.

cEDODDEHMTETSD: ch=¢€". D&, bab=¢€b=b, .. chab=ch, . e"ab=
e, sab=¢€". M T, VEBMNITT e ITHL,

abe) =e"e=e, > T, a DEYTIL be THS [(ii) ZET) O

FWANER (L I, IIL IVR) 2§29 G % multiple group &\ 3.

@ multiple group WEBNITCEF TIEHTH 2.

EIE 2. multiple group G IZBNTIE, ca=ch = a=hb.
£ 3. multiple group G IZPNWTIL, ab=e (EBAIIT) = ba =€ (EBHLIT).

£ 4. multiple group G IZBWVWTIE, Va € G, Ve EBLIT, IZHLT, J1aDh
BIt. a ODBFREFT L EED (ba=¢) &, be MENTHS : al(be) =e.

SEBA. ab=¢€ XD, abe=¢ce=¢ O
£ 5. multiple group G KBTI, Vae GIZHLT, J1e EBNIT st. alde

IR LU TESETERED. 517, ae=ea=a THD, MMOEBNIT e #£e 2L T
a & e EZIRRBTIzW.

BA. ba=e, bla=¢ =T D&, abe=¢, ab'e’ =¢€'.

77 O
a:=|{ EBNIT }| & G DR (index) & LK.

®a=1451F GHBETHS.

{ei; iel} ZEBTORELET S (a=|1|).

e KBT 2 a DAY (FH4Y % a;' EEL: aaj' =6

a WEFTLERDEBEMN TR ¢; &T2 (—FEW, THD5).

FH3, 412X, ajla=¢; (Vie ).
T, EEA4ICED, ailer=a;! (k€.

Ki = {CL‘ (S G; ol €; K'_%H./T, Eiﬁi%ﬁj }: G= UaeIKi‘
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1933. |1] A system arising from a weakened set of group postulates

FIH 6. multiple group G ICBWTIE, & K; 382127
(5% G Z2BRT 5B (groups of composition) &115.)

ITEIT, a; €K, 2E0, aie; ZRNED. bi=aqaje; £BL. a;l 2R K, LB
BB ILETSEE, ai_la,' =e. §5&, ai_lb = eje; = e,

b= aie; =4 € WKL TESTLEFDODT, be K;. LT,

be; = a;eje; = aie; = a;, b =aje; =:a5 ( #1), @5 = 4
ase; = ai,
gt {a;; i € I} ZEWIZ #& (conjugate) & 3.

EB 7. HEMNE a; & aj IZ& 0 K;, K; BEWCERBTHS . K; K;.
(multiple group G ##R9 28 K; E L FELZ#H% composition group & L .X.)

£ 8. multiple group G ZILEIRIT1T 5 L ZDOHEFDESIT composition group
E RIS EITIRS.

EE9. EBNVIILIED VN S5725 multiple group % unitary multiple group & )
28, TN ZORKICE > T—BHITHRED : eej =e; (4,7 € I). multiple group
G @ unitary multiple subgroup & G DR¥ o THRE 2.

FE10. H 2LBO#, o 2EEBOEKELTS. DL E, H % composition group
EL, a ZKR¥E TS multiple group G 2R TE 3.
W2, £E® multiple group G 1% ® composition group H &K o & TR 3.

BB, |I=a L7350 FEEEES. icIlIHL, HOAY—K; -0, ac H

abj := (ab); (a,be H, i,j€I)
£S5 IHNRAER (L, IL 1L VL) 29, #-> T, G 3 multiple group T3 3.

STHE, G % multiple group £92. ERTICBITDLICK;da,04; €K
ETBHLE, aie; = aj LDT,
a,'bJ = a_.,'bj. fﬁ]‘jf, a_-,'bj = (ab)j, Wwziz, aibj = (ab)j‘ O

E® 11. multiple group G KBWNT, a,be G IZHL, FBR ar =b I3—BEMWQ
MERED.

fll. G=C*,a,be G OHIE, (a,b):=]alb.

WNEFR (I 1L 101, IVR) AR T 2. EHMMNTEOESIL {e¥; ¢ € R}.
composition group 13 RY.
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1937. |5] Representations induced in an invariant subgroup

1937 [5] Representations induced in an invariant sub-
group

[5] Representations induced in an invariant subgroup, Ann. Math., 38(1937), 533-550.
(E. # G OEHAHERERE G O ERMAIBICHRL L &I, TOBEERS &,
HRICHERBEANEN TS L, 2RULAEBERINEETH 5.
RRXDILFEELIERTERELTHMDESLT, MWD HEEHMATH5.)

1 RROHR 7|y OFESAHME

G: Hh&R#E
N: G OIERRITEE
7. G DK P EOTHIRE
reGoan~OER: (Tn)s):=xn("tsr) (s €G).

ETH1.1. 7% G O&K P LOTHIC K BBNERE, N 2EHR LTS D&
=, 7 OHIIR n|y RENAZENTH BN, LI, A—KTO N OBMHEREOH
T 5. o) 2Z0BHRIO 1 DET5E, MOBMRSEGCOLET, Th
WHRTH S, 5K, I G-HEEBOTNERBR «|y IKHNS.

HBEADF—RSA b, 7 OXRFAEMEV &L, 2O N-AERAIERE V' L9534,
MEED reGIIMLT, n(r)V' d N-ARTH 2. EBE, ue N, v e V' ITHL,

m(u)(m(r)v') = n(r) (x(r~tur)’) € n(r)V' (.0 u' =r~lur € N).

2 TR OEFKBM (imprimitivity)

EH2.1. G DERM 7 NERA (X713 EEN, EFRBK) THEEE, RO%
BEJFTEEITHS
7 OFRFZEM V(n) iLER

(1) Vimj=Vi+Va+---+V
WWHMRELT, {Vi; 1<i<k} 3% n(9) (g€ G) &> T, 2FELLTESHINS,

RELLORRCBVT, o000, ... o8 % 7y KENBHUMRSOSBT, B
WIZEREARDOORADEEETS. i (1<i<m), CHLT, Vi % p¥) & FME7EE
RRBFOB <MY EM DM, £75.

EE2.1. Vi, Ve,V B OLFAMORERT. |y OEERES o) EF-
DEHE T njy BN, dimr=lmn, n= dimpg\z,).

BB, AR V(m)=Vi+ Vot +V, ST n(g) DITHIRFREBELT
mi(g) - mim(9)
Tml (g) Tt 7rmm(g)
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1937. [5] Representations induced in an invariant subgroup

EF5. ue NREWLTR, ;i oY @ | BOBMT, mj(w) =0(i£5) THB.
geGITHLT,
(3) m(g) " r(w)n(g) = 7(g 'ug) = (*r)(uw) (u € N),
mii(w) mij(9) = mij(9)mi5(9 " ug) (u € N).
THBEMS, 90 (w) = ¥ (g7 ug) = p¥ (u) (u € N) TIRFHIE, m;(g) =0. T
Uit j R—BHEOT, j=g71() &B<.
ZHCED, m(g) B Vg o Vi (1<i<m) & Vj,j=g7'(), & Vi KBLTESR

T5. m MPEKHZOT, g_O)Eﬁliﬁfiﬂg’CZBU dmV; 13E—T» 3. EH11I2kD,
dimp{) = n (Vi), #o T, oY O n|y KRBT BEHERF—TRIFIUTRSH. O

E21l. LOEBICED, n(g) D70y VHEER (2) KBLT, &FEFIIEENE
N1BEEFETRN 1;(9) BB 5 (G = g71(), j = g(i)). o

¥ 2.2 (imprimitive MEREE). #13E imprimitive 14, primitive (FLAH) OEE M
5, TORREE LT, BEREN NF0ESM, Z0EIR TR OEE (not primitive)
=%k7. ULnL, R lmprimitive] TRIN TS LORHIE Mprimitive M5 1341
AN TV 38 primitive 12V ] H U <IE Mprimitive TH D=0, §DURED V)
EVOTERBMTHS. Ko T, 2BEE TR WRE TEFELHEH] U< TRFEBI] O
HRREZLZDBETNCERLTWSEEbNS., 2T NERBER) &AL, O

(4) H:={d €G; n(¢g)V1 =W},

EBL. B {ri=eryr3,...,tm} CG E o)V =V, E7RB LI ITERLE,

(5) G= |—|1<i<mr‘H

T DITHIERR 2) DELIFICEETS &, mi(ri) 0 Vi = Vi T ma(ri) ‘iJEE”, ¥,
mi(ry ) Vo Vi, BERITS 5.

F
m1(r2)

(6) L= (E VREAFTHY),

TTml (Tm)

EBE (LRERF), 1(g) % Ln(g)l EERLT, ThESSEDT n(g) LB,
71'1'1(1‘1') =FE T, 71'11'(1‘1-—1) =FE &30, 71'(1‘1'}7,1‘]-—1) : V] ViV V, T,

(7 my(rihr ) = Y m(rs)mee (i (r7Y) = (k) (h € H),
k.k'

BERS, k=1, =18 my(r) & mp;(r,”) BBETRVHE—DRFENS.
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1937. [5] Representations induced in an invariant subgroup

ta(h) = m(h) EBL.
IITHHREDT, FBDge G E2ED. BFRjIIHL, n(g): V; =n(r))V1 -
=T

Vi rV1(i=g(),1<j<m) TH%. WAL,
ri_lgrj € H
ERDIDV—RIIGERETS. £LT,
TH(’I‘;lgTj), ri—lgrj ceH DL =,
(8) mi;(g) =
0, FOMD L=,

H OFH g WEGTRINERSH. LT, G OXE 7 i3 H OBPEE g »
SES NI EFRBRNRTRTHS. iy = [I]- Y THBR, 0 7y BRNEHTHRS.

iE 2.3. Frobenius A HRBFORE R/ Z AR L RO A DRI [F56] (1898) TD
MR ENSOFERE] OBRBIFLLT MBEREOFEE, IOV TEVWTHEA, I
 (REOFE) CEZRAT (HRBENSTILHRL O EXE m;(9) OBR (8)
i, Tr(g) = (mij(g)) &, 74 OHEBRBETH DI 2BRT 005305 :

(9) 72 IndGry .
3 KBy OBiE (FRXD §4 OABTHLEDAATEIELTHD)
ZONEGTIRERE P RRENEATH 2L EET S, 7=, pi= oYy EBL.

T 3.1. HZEZH, N 22OERMIE, 12 HOBYERERALTS. R 7|y OB
KR EH5 p CEETH D, LRET S :

(10) Tiv =[] p.
() H OBEE 12 H 02 >OMMH ¥ EROERCABTHS :
(1) 7(h) = C(h) x T(h).

ZZIZ, dimC =dimp, p(h~tuh) = C(h)"p(u)C(h) (h € Hyu € N), dimT = 1.
(if) ROLT DL DICIERIETES :he H,ue N ITHLT,
C(hu) = C(h)p(u), Cu) = p(u); T(hu) =T(h), I'(u) = E;.

IDEZE, h—»C(h) X H ORERRTHY, h—T(h) X EE L /i H/IN OFHE
RETHS. TSI TZ2RFEIIEE L H/N x HIN OB THD, BN
DFETHS.

FEBR. T ORMEMEBFHUIIMEL T, 7(u) (u € N) OFFARRIROHRITIR
551283

(12) (u) = (u € N),
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1937. |5] Representations induced in an invariant subgroup

ZNIXIELT 7(h) (he H) 270w 7 RIZERRT S :

REICED, Yhe HIZHLT, nxn T8l C(h) (n = dimp) BEELT,
(14) p(h~'uh) = C(h)"'p(u)C(h) (u€ N).
C(h) WAN T —(EEBRVWTREDODT,
hs C(h) (h € H)
i3, H ORERRTHY,
(15) C(hK') = a(h, )C(R)C(K) (h,h' € H, a(h,}') € C*)
T T, a(h ) RHEER C ORFRATSHS. 7(h)"Ir(u)r(h) = 7(h7 uh), 5,

p(u)TaB(h) = TaB(h)p(h_l'Uh)a
(16) s p)(Tag(R)C(R)™) = (rap(R)C(R) ™) p(u),

E72%. P AREMIBAZZ DT, Schur DHHBENSEZR T,
Tap(h) = Yag(R)C(R) (Ivap(h) € C¥),
E7B. I x L FFI D(h) = (vap(h)) ZHEAR,
(17) 7(h) = C(h) x T(h) (h € H).
T(hk') = r(h)T(K') (h,h' € H) 2DT, (15) 25,
(18) L(hh') = a(h,h)"IT(K)T(K),

EET. T HONERRTH S E, BLY, FORTFHN C OFNOFETHE T
EBRND. 1(w) = p(u) x By BDT, Cu)=pu) (ue N) ERETES. T5H&,

19) { T'(hu) = a(h,w)T'(h)

D(h) = a(hu)'T(hu) S EHEN)

ZZT, BFH ah,h) BEELE H/N x HIN LOBETH D EERED. Ch)
WCHd D (14) ITBNWT, hx hv(ve N) ITBEHRASD L,

p(h~ uh) = (p(v) C(hv) ™) plu) (p(v)C () ~1) .

82, B Schur DHEREICE D, C(hv) = Ayp C(R)p(v) (3An, € C*, h € H, v € N).



1937. [5] Representations induced in an invariant subgroup

#ZT, HIN OFE2RFKXFR R #BFICHWD, HLL,
(20) C(hou) := C(ho)p(u), C(u)=p(u) (ho €R, u € N),
EBL (HW Ch) ERAAST—BLMEDIRWV). T5&,
(21) C(hu) = C(h)p(u) (h € Hiue N)
&%, XoT, u,veN, hke H IZHLT,

C(hu)C(kv) = C(h)p(u)C(k)p(v)
= C(h)C(k) p(k™ uk)p(v)
= alh, k)C(hk)p(k™ ukv) = a(h, k)C(hukv),
( )

a(hu, kv) = a(h, k).
EM31O (11) #5&, he Hue N IZHLT,
r(hu) = C(hu) x T(hu),
r(hu) = 7(h)r(u) = (C(h) x T'(h)) (p(u) x E)

ZDEE hT(h)d H/N OREXRBT, TORFH a(h,k) (h,k € H) & H/NxH/N
LORKTHB. O

4 BHiALRER

P25 4.1. FHRMOE N OBHNER p I3, G OHIEHRVITHDIAENDIN?
G WEREE, bl aynyi#gchhid, B YES.

OB EERD

(421) H:={seG;p=p} £LT5HLE, [G:H]<ox,

(4.2.2) pld HDHZHHNEKRR 7 LSFENS.

FE4.1. (i) N OBKER o 41 G OB BENER © IKRDAENBHORBET
AEEE, (421)+4.2.2) Th 3.

() FEXHE r=Ind¥p 2E 2 L.

(i) HBA P 2REMAL T3, (4.2.2) BENIT B0 OBEHEMER

(4.2.2) (*p)(w) = C(R)p(w)C(h)™ (ue N, h € H) wk 0hRED H OMEESR C
% (21) MBI T A E D CERNLTS. TOEFME a(h k) (hk € H) i H/N x H/N
LoMEICB. BEH alh k) 2D H/IN OBRKTHEER T 55T 5.

InEE, 7=CxT &BLE, 7(u) = p(u) x T(e) = p x E|.
(iii) BL [G: N] < oo 6, FBD N OBRHNERIRL G 0HBEHNKRBICETN
3. () BEER 7 =Ind§p &AL,

—-124—



2012. ¥ HEEEAOD, [5] €# 3.1 DA (P

5 FRafEBAGR

TITH, N OBMERE p MMEDAEND G OBNESR 1 2T R TRODHIEEN
B

EES5.1. GD2ODMNER my,my IS N B L THIEL TWa &3, 7r1|N,7r2|N
MILBOBRKRAERH DI ETH .

E#ES5.2. HD2DODXRMKAT,A WS [EE (strictly equivalent) TH 2 &, EI75 M
MHo>T, RKBBILTDHI &

A(h) = M7IT(h)M (h € H).

TE5.1. N OFEREB p iU THMEBRICHD G D2 DOHKNER 7, m 1, £
NEMRRDD H/IN OFHFEFERE T, T OAETERNES : m mp = I 2D

6 ¥ (semi-linear) RINANDHLE

BGIEHEBEP CHERALTVSEETS: GxP>3(s,a)—»°aeP. T5&, H
RENRTZ MIVERV = PP IZb@<.
G DHRERIE s — {A(s),s} £, se GITHL, B

V3v— A(s)(*v) €V,

EHZD2BDTHD. ZOERIIBNTH, EEFEHKROBENEFOSND. (AT

2012 FERBEAD, [5] EB3.10H (FH)

(GE.  ®RX[5] €E31 S, ZOAREDETICE, M0 OERSS - RER
2, —B, BAELTO LAFD) €811 GIHRBOERIE) VEHINTHD L,
ZHEETHRVEDBE XS, 2B, HAK, ZOFHEL1IO (5] &3MID) JIEEH
(Mackey OHE5& & BI3) #1§T, [Hir, 2013] iIcFWnie. ]

G=NxSZERHEIBEN MREH S LO¥EBHLETD. seSII N LicHE,
WO TEDRE p ITH, (®p)(u) :=p(sus™!) (ue N) &@<.

1 HEEE G OBNFRROBAE
A5 S EERERETS. C0EE, G OAEBEOHHERIIROFIRTESNS ;
(1) N OBIER p 2L 0, ZORIESE [p) DEELEIREE S([p)) &L :

(1) S(lp) ={s € S; b = p},

ZLT H(p) == N x S([p]) £B<.



2012. ¥ HEEHAO, 5 EE3I1OEHA CEH)

(2) s€S(p)) KHLT, %o & p EOBIERAE C(s) £ EREMITRD S :
(2) C(s) 'p(u)C(s) = *p(u) = p(s'us) (u€ N).

TBHE C(s) AN T— B ERVTHRETEDT, S(o]) 35 — Cls) RREERTH
5. FORTH a 11,

(3) C(s)C(t) = afs,t)C(st) (st € S([p)),

TH3. Clus):=pu)C(s) (s€S(p]), ueN), B, THIIFEREE Hp) ©
WEXRET, TORTHIR, D&&#HET:

alus,vt) == afs,t) (s, t € S([o]), u,v € N).
3) S(lo]) PETE als, )" (st € S(p]) EHOBMMERE  £25. ZLT,
(4) 7(us) == (p(u)C(s)) B r(s) = Clus) Wk(s) (ueN,seS(p))),

EB<E, TR, 2DORFEINVENVWIZELS > T, H(p) ODBEEORHERICIES.
FIT, TORICEERRZLNE, NG OERNEREZE5Z 5 .

(5) w[p, K] == Indg(p)T.

THE1.1. (i) ¥EEBEG=NxSKBNWT, N 2217 b, SE2ERBLEK
ETDH ZDEE, GOEEDENERE 713 (4) DENND nlp, k] KFEETHS.
(i) wlp,k] =7, K] = p=p DK

S8, Clifford [5) OFE 3.1 SEE 5.1 2EATS. LhL, Thohs LoEE
LIKESKEZEVWIDITTIEEL, MEErOEAD S, FIT, ZOEHEILLIOD
HHHIIHEFICBENET DT, BArohk. O

F. EE1.105EEM%E [Hir) T&A . ZHid, Clifford [5] * Mackey OfEEN S
ML THS.

2 HERASEhILERBOH GL(2F,C)x S

2.1. BRDKTn=2F D—EHYEE N =GL(2KC) 8%, TheFHERIE
LTDYERBEG=NxS 2&215. NIZERATLIH S 2RORIZES .
Goky1, in Casel;
(6) S— Gok+1, ?n Case Il_ ;
Aokr1, in CaseIl;

621:, in Case II',

FNFROBEI, EERE A:=M25,C) > N=GL2kC) = A% ~D S DIER
EHEAZED, ETIORBORRBERTREERD. TORHICET, 280
=& 15)% Schur 2> T,

DR ) P A



2012. FEBEHEAD, [5] €H 3.1 DA CEH)

EBL. D75 a, b, c 13EE Pauli WKEREFREDEBFOLRICE L THR L Pauli
D 3175l 04,04,0, ERLHDTHS. INSRROBEBEREHKET: [a,b] := ab - ba,
EBINT,

(8) [a,b] = 2ic, [b,c] = 2ia, [c,a] = 2ib, abc = ic.
50, R n=2F 0751 Y; (5 € Ioks1 :={1,2,...,2k+1}) &
Yaic1 = -V ®a @8k (5 € Iy),
9) Yo = B Dbk (icIy),
Yops1 = BFD e,
EBL. T, PP Rz D pEFIOVNEERTE, p=0 DL EIIIEERT S,

W21 E = Eyx %28 ROBAFTFHETS. G, := {Y; (§ € Ips1)} 1B3RE
M2k, C) DERTRTHD, FOEKXBHERIZ, KTHEASNS :

(10) sz = F (.7 € I2k+l),
}/J}/l = —}/IY} (]al € I?k+lv ] 75 l)7
(11) Y1Ys- - Yops1 = ¥ E.

2.1 6)XNTHERAONEH S ITHL, 0€8§ DR {£Y;Y € G} ~OEAZER
DEHITHL

( Case I: d'(Y]) = sgn(0) Y}, (5 € Takn1);
Case II_ : o'~ (Y;) := sgn(o) Yoi5) (€ Iok41)s
(12) 7 Case II: oY) = Y,y (j € Taks1);
Case II':  oU(Y;) := { Y U & In)
L sg VYo (F=2k+1),

ZZWR, Y] = (-1)"Y; (j € Iks1).

2.2. () BE21 Do (Fid o) 12, Gopy) DEEARE A=M2+C) D

EEZz

(i) o' P:t B UAgpy) DEERBMANDEAELEX S,

(i) o' 12 Gy DA “DIERELERS.

(iv) TSR, # G=GL2%,C)= A \OER%EHET 3.
(ENHIEFRICEEBE TR IN D).

2.2. BO)ROBES & N=GL2kC) ED¥EHDRE
(13) G=NxS§

DRREROBREEGA SO HEBEENERELSEZLD. 0§ O X e M(2+,0)
ANDERZE (ZITEWY) I X °X E&T. THEEARK M2k, C) oREIEY
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2012. FEMEAD, 5] TE3.1 QKA (i)

RTASECERTSS) EVSHEICED, Bl °X @, $RTH35 V(o) ok
BRBIERMTRIND ;

(14) X =V(0)XV(o)™" (X e M(25,C)).

LOBRKER V(o) 21 X - °X OHEMEAE (intertwining operator) & X A.
V(o) BANS—EZBENVWTRESDT, Hik S50~ V(o) BEEEEZFSE, Lo
T, S ODREXFTHSIREMDNH 5.

TR 2.3. B G, OHMER s, = (p p+1) KKDERITR {sp; p € In_1} [FIF
Un DERRTER {s48p; ¢ >p > 1} KL T, ZOHBEERERR, TNThOHEEIE
CROEIKKEZLENS

_.1P1

Vn(Sp) = (Y +Yp+l) %( Y, Ypl+1)a
(15) { Vilsp) = ﬁ(lfp_)/p+l)a
Vi(sp) = Vi(sp) - 1Yon 41 (6 = v=1).
| Un(sq8p) 1= Vi(sq)Vi(sp) = Vi(sg)Vi(sp) (¢>p 2 1).

EN‘I‘I

B. FEICI->TRDOSNS. LKL, AREAROREENEL SNEKET
I3, tHBEREMR (14) 2 X =Y; (ERoD) WML TFz v I/ TBEFTINR, ENoR
ROMBIZFNHEINTNS. O

W24, () n=2k FEld n=2k+1, 0 €6, ITMHLT,

(16) { Vn(5p)YjVnl(sp) ™ = =Y, ) (p € In-y, j € In),
Va(0) X Va(o) ! = ol(X) (X e m(2k,C))

(17) { Vln(sp)ijln(sp)_l = _Ysp(j) (p € In-1,j€Iy),
V(@) XV (o)t =o'~ (X) (X e M(2*,C)),

(i) n=2k, 0€By ITHLT,
(18) Va(sp)Y;Va(sp) ™t =Y, () (p € In-1, j € I,),
Vo)XV (o) = o' (X) (X e M2k, C)).
(i) n=2k+1, Agks1, KXLT,
Un(”i) }’j Un(’”i)—l = T i181(5)
(vi = siz181, © € Top_1, J € Topy1),

Un(0) X Up(o)™t = o(X) (=0 (X))
(0’ € Aopy1, X € £Ut(2’°,C)).

(19)

TH 2.5,

(i) Valn=2k) &EV,(n=2k+1) 13 &, DHERRTHS.
() n=2k KXMLT, V! 138 6, OHEEETH 2.

(iti) n=2k+1 IZML, U, B#¥A, ® (2{HD) HELERRTH 5.
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1940. [7] Partially ordered abelian groups

1940 [7] Partially ordered abelian groups

[7] Partially ordered abelian groups, Ann. Math., 41(1940), 465-473.

(& B&)

1941 [8] Factor sets of a group in its abstract unit group

[8] (with Saunders MacLane) Factor sets of a group in its abstract unit group, Trans.
Amer. Math. Soc., 50(1941), 385-406.

1 BXRBEOHE

EH1. ABEBTICHLT, 2OMKRENMS (abstract unit group) H &1, £t
% {H%; 0 €T} &EXBHRK

(1) HUGFHU =1L
TEBINZBTHD. ZOBORBELT, 1 e IIHLT,
(2) A(r): H - H°™ (o €Tl),

EBLE, ANA(T) = A(rr') (r,7 €T) ThH 5.

EHE2. 9O T 12X DI (extension) & &, & M H 2 EHEOEE L TEH,
B/H=T L2HDTH3.

B NO B/9 ORERETLR up (0€T) LT, 6 DiE ugd(0€l, A€ H) &
£9 L, TOHBEIZ 0,7, AcHiITHL,

(3) Aug = ugA®, Uotr = usFyr (For € 9),
EETS. I'xT Lo H-EMEKELT, F,r 1E
(4) Fp,;Fpa,‘r = Fp,a‘rFa,‘r

BT, CNET O H KBI2RFE (factor set) & XA
MOFEENRETE v, =u,C, (0 €T, C, € H) BEHE, THIHTIETHI,
cre,

(5) F, = Fyr (o,7€T)
' Cor

TH%. WFHE F,r & Fp, &1, AFETHZ WS, AEREFEERD, H 02D
DIk 6, 8 BRAKTHD WD,

3. FH:=TXTO H-EKFHADZ T oI HREE,
TH:=H-ERFETHHRZKEFE 1 IKE~ERS OS2 RlHE,
M$H:=F§/TH %D O H ITHBFHRERFH (mutiplicator) & KA.
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References

T4 Q ERENAKT, TOEKN n=[| 2HSEVLDETS. [xT LD
Q-fERAEK wyr A%, QICHBITZ T OERFHAEIL,

(6) Wp,oWpa,r = Wp,grWe,r (p,0,7 € I,

EHRLETHOTHSD. T OQIBILRERFEH M bFARCERT 5.

FHEIL IO HBIZ2REEFRIMH IE M EHETHS.

BE. I #8513 OK
V= {C = (Cs)oer; Co € f)} =9,

(7) 0: VH3C =(Coloer — F = (For)orer € TH, For =

U9 := {C = (Ca)aEI‘ ev9 ; CaTCT = CU"'} = Ker((ﬁ)’
VH/US =TS
UH DI C = (Cy), Cor = CJCr, ZREIEE (crossed character) &WH. (GEE.
semilinear map &¥EBPIL T 3.)

Y: $H 3D (D) =(C,), Co:=D'7:= % € ¥(9)

C = ¢(D) L;ti%#‘é%’@%é. IR,
D ™D i}
Ca.Tz-F:(-l—j—a_)—TF:CaCT-

TES. CH:=UH/Y(H) 2 T OREBFEBEE LN

P2 TOXERERCHOWE T OBUIEER ¢ LEMTHS.
BE. T Nul@Ei/2513 OK

ELF, #XOFMIBNETS.)
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Classical method of constructing all irreducible representations of
semidirect product of a compact group with a finite group'

Takeshi HIRAI (Kyoto)

Abstract. Let G = U % S be a group of semidirect product type, with U com-
pact and S finite. For an irreducible representation (=IR) p of U, let S([p]) be

. the stationary subgroup in S of the equivalence class [p] € U. Intertwining oper-
ators J,(s) (s € S([p])) between p and «"'p gives in general a spin (= projective)
representation of S([p]), which is lifted up to a linear representation J, of a
covering group S([p])’ of S([p]). Put 7° := p-J), and take a spin representa-
tion 7! of S([p]) corresponding to the factor set inverse to that of J,, and put
(x°, =) = Indgxs([p])(wo O xl). We give a simple proof for that II(#°,7!) is
irreducible and that any IR of G is equivalent to some of II(n?,7!).

Introduction. Let G = U x S be a semidirect product group, with U compact and S
finite. For an irreducible representation (=1IR) p of U, let S([p]) be the stationary subgroup
in S of the equivalence class [p] € U. Intertwining operators J,(s) (s € S([p])), defined by
p(s(u)) = J,(s) p(u) Jo(s)~* (u € U), gives in general a spin (= projective) representation of
S([p]), which is lifted up to a linear representation J;, of a certain covering group S([p])' of
S([p]) (cf. Lemma 1.2). Put 7% := p-J,. Take a spin representation r! of S([p]) corresponding
to the factor set inverse to that of J,, then the tensor product #° [ 7' is a non-spin IR of
U » S([p]). Inducing #° O =! up to G, we get (7%, 7!) = Indgxs([pl)(wo Orl). We give a
simple proof for the following theorem (cf. Theorem 4.1).

Theorem. Each II(n%,7!) is irreducible and the set of II(x°, 1) given above is complete in
the sense that the dual G of G has a complete set of representatives in it, or that any irreducible
representation of G is equivalent to some of (7%, 71)’s.

Our proof is elementary and needs only the least minimum on projective representations of
groups, prepared in §1. (See [Schl] or [Yam] for more knowledges on general theory of such
representations.) For proofs of irreducibility and completeness, we utilize fully characters of in-
duced representations. Thus, our proof is completely independent of the results of A.H. Clifford
in [Clif], with which we can give another proof.

This paper is organized as follows. In §1, we give some preparatory lemmas on projective
representations of groups in relation to their central extensions. In §2, we treat the case of
semidirect product éroups G = U % § with U compact and S finite, and give the definition
of T(n°, ') = Indfy, g, (7® O #!) with 7% = p- J,. In §3, an integral expression of the
character of II(7%,w!) is given, and using it the irreducibility of IT(x, 7!) is proved. Also we
give a set Q(G) of I; ; = II(n?, }), whose characters xy, , form an orthonormal system in the
subspace of invariant functions in L?(G). In §4, the main theorem, Theorem 4.1, is established
by proving the completeness of the set {}(G) of characters xr, ,, first in the case of finite groups,

then in the case of U compact in general. In the latter case, we use a fundamental lemma,
Lemma 4.2.

'A$RI2, Probability and Mathematical Statistics, 33(2013), HEH X DOBFEERTAIZ D 2 DXEE N
A, 2700 Appendixes ZIMLAHDTH 5.
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1. Preparatory lemmas

1 Preparatory lemmas

1.1. Central extension. Let G' be a topological group and Z its closed central
subgroup. Put G := G'/Z, then the following sequence is exact:

(8) 1—Z —G —G—1 (exact),

and G' is called a central extension of G by Z. We call G’ also as a covering group of G, and
call G as the base group of G'.

A representation II of G’ is called of spin type x € Z if (2 ) = x(2) (2 € Z), where I
denotes the identity operator. Denote by G’ the dual of G' consisting of equivalence classes
[IT] of unitary irreducible representations (=IRs) II of G’, and by G’ its subset consisting
of [II] such that the spin type of Il is x € Z. For a compact group H, denote by py the
normalized Haar measure on H such that py(H) = 1, and denote by L2(H) the Hilbert space
of L?-functions on H with respect to py.

A function f on G' is called of spin type x if f(2¢9') = x(2)f(¢') (z € Z,9' € G’). Assume G’
is compact. For x € Z, denote by L(G'; x) the subspace of L*(G') consisting of all feLqa)
of spin type x. Then L?(G") is an orthogonal direct sum of L2(G';x) over x € Z. A matrix
element f of a representation Il of spin type ; X is a spin function of the same type. Take a
complete set of representatives X = {II} of el , and denote by M([II]) the space spanned by
matrix elements of IT, then L*(G’; x) is an orthogonal direct sum of M([IT]) over I € X,

Lemma 1.1. (i) Let G' be finite, then for each x € Z,

S (dimI)? = |Z| |G'| = |G].

e

(ji) Let G' be infinite compact, then for each x € 4 , the number of equivalence classes in
G~ is infinite.

Proof. (i) The dimensions of £2(G'; x) is equal to the sum of dim M([II)) over [II] € G,
Matrix elements of IT span M([I]), and dim M([II]) = (dim IT)2. This gives us dim £#(G’;x) =
Z[H]em (dim IT)2. On the other hand, a function f on G’ belongs to £2(G'; x) if and only if it

satisfies f(zg') = x(2)f(¢') (z € Z, ¢’ € G'). Hence dim £2(G';x) = |G'|/|Z| = |G|
(if) This is proved similarly. O

1.2. Cocycle and central extension. Let G be a topological group. A projective or
spin representation 7 of G is defined as a map assigning to each g € G a linear map w(g) on a
vector space V(r) which satisfies

(9) m(g)m(h) =rgnm(gh) (g,h € @),

where ryp, € C* := {a € C;a # 0}. The function ry,5 on G x G is called the factor set
associated to . If we replace m(g) by its scalar multiple n'(g) := Aym(g), then #'(g)n'(h) =
T aT (gh) with v, = (AgAn/Agn)rg n. When 7 is unitary ry s € T':={acC;la =1}

On the other hand, a function ry, € C* ((g,h) € G x G) is called a 2-cocycle of G (with
values in C*) if it satisfies

(10) T hTghk = TgrkThk (9,0, k € G).

Defining that r, , is equivalent to T, Biven above, we have the second cohomology group
H%(G,C*) with multiplication product called as Schur multiplier of G.

We assume that a cocycle rg & is T'-valued, continuous and normalized as Te,e = 1. Let Z
be the closed subgroup of T" generated by the set of values rg.n- Then, since Zis closed, we
have only the following two cases:

Case 1. Z = (e*"¥/™) = Z . cyclic group of order n,
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1. Preparatory lemmas

Case 2. Z =T
Starting from a cocycle ry 5, we can define a central extension G' of G as follows.

Lemma 1.2. Let G be a topological group, andr,; (g,h € G) a cocycle and Z C T" be the
closed subgroup generated by the set of values 1y 1.
(i) Introduce in the set Z x G the following product rule

(11) (2,9)(2,h) = (22'rgn, gh) (2,2 € Z, g,h € G).

Then, we get a central eztension G' of G by Z as in (8).

(i) Let w be a projective (or spin) representation of G whose factor set is vy ;. Then it can
be lifted up to a linear representation ©' of G' acting on the same representation space V()
in such a way that 7' ((z,g)) := zn(g) for (z,9) € G".

Proof. (i) Thanks to (10), the associative law holds for the product. Moreover (z,g)~! =
(27 (rgg-1)71g71).
(i) By calculation, we have ='((2,9)(2',h)) = 7'((z,9))7' ((z', h)). a

We say that the central extension G’ in (i) is associated to the cocycle ry »; and that the
representation 7' in (ii) is called a spin representation of G’ (and also a spin representation of
G). When we apply this lemma later in §2, it is for a finite group such as S([p]), and so the
central subgroup Z is finite in that case (cf. §2).

1.3. Central character of G' and spin representation of G.

Let G’ be a central extension of G by a closed central subgroup Z as in (8). Take a section
s : G = Sg C @ for the canonical homomorphism G’ — G. Then, for g,h € G, we have
s(g)s(h) = zg ns(gh) with a z, € Z.

Lemma 1.3. For a representation Il of G' of spin type x € 2, put
(12) m(g) =1(s(9)) (9 €G).

Then, m is a spin representation of G with factor setty ) = x(ngh).

Lemma 1.4. Let G be a compact group and ry 5 a continuous cocycle of G with values in
T'. Take a central extension G' of G associated to r, . Then there exist unitary IRs of G' of
a certain spin type x (resp. xo) such that t, 1 = x(24,n) is equal to rgp (resp. rg;ll).

Proof. Let Z be a closed subgroup of T generated by the set of values r, 5. Let x (resp. xo)
be the character of Z given by Z 3 2 = z € T! (resp. Z 3 z = Z = z7!). Take a section
5s:G2g—(1,9) € G' (= Z x G as set). Then, take IRs IT of G’ of spin type x (resp. xo),
whose existence is guaranteed by Lemma 1.1. Putting n(g) = II(s(g)) (g € G), we have by
calculation

m(g)n(h) = H(ryns(gh)) = x(rgn)m(gh) =renm(gh)
(resp. = xo(rg,n)m(gh) =r, 3 7(gh)). 0

Let = and 7" be spin representations of G with factor sets r,,, and r; ,, respectively. Then

the tensor product 7 ® 7" is a spin representation with factor set g s ,. Therefore, if r{ , is
the inverse of rg 5, that is, rj , = rgy;l (g,h € G), then 7 @ ="' is non-spin or is reduced from

G’ to a linear representation of the base group G.
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2 Case of semidirect product groups

Let G be a compact group of semidirect product type G = U x S, where U is a compact
group, normal in G, and S is a finite group. Here the action of s € S on u € U is denoted by
s(u).

Take an IR p of U and consider its equivalence class [p] € U. Every s € S acts on p as
%p(u) := p(s~1(u)) (u € U), and on equivalent classes as [p] — [*]. Denote by U/S the set of
S-orbits in the dual U of U.

Take a stationary subgroup S([p]) of [p] in S, that is, S([p]) = {s € S; % = p}. Put
H :=U % S([p]). For s € S([p]), we determine explicitly an intertwining operator J,(s) as

(13) p(s(w)) = Jp(s) p(w) Jp(s)™" (€ V).

Then it is determined up to a non-zero scalar factor. Hence we have a projective representation
S([p]) 3 s = J,(s). Let a,,. be its factor set given as

Jo(8)Jo(t) = a5 e Jo(st)  (s,t € S([0)))-

Let S{[p])’ be a central extension of S([p]) associated to the cocycle oy ;:

1— Z— S([p])’ 25 S(lp]) — 1 (exact),

where &5 denotes the canonical homomorphism. Then, by Lemma 1.4, J, can be lifted up to
a linear representation J) of S([p])’. Put H' := U x S([p])’ with the action s'(u) := s(u), s' €
S([p])’, s = ®5(s’). Put also

70((u ) = p(w) - Jo(s') (ue U, s' € S((a)),

then 7° = p - J) is an IR of H'. Take an IR n! of S([p])’ and consider it as a representation
of H' through the homomorphism H' — S([p])’ = H'/U, and consider inner tensor product
7 := ! as a representation of H'. Let the factor set of 7!, viewed as a spin representation
of the base group S([p]), be B¢, then that of 7 is s Fs 4.

To get an IR of G, we pick up 7! with the factor set 3, ; = au,,ftl (this is possible by Lemmas
1.1 and 1.4). Then 7 becomes a linear representation of the base group H = U/ x S([p]). Thus
we obtain a representation of G by inducing it up as

(14) m(x%, 7)) := Indg = In(iij}(ﬁ0 Grh).
Lemma 2.1. Let p be an IR of U, and J, of S([p])' end 7° = p-J}, of H' = U » 5([p])’ be

as above. Let w! and w} be IRs of S{[p])’, mutually inequivalent, with the facior set inverse to
that of J,. Thent =7 r! and m, := 7° O 7} are irreducible and mutually ineguivalent.

3 Character and irreducibility of II(«°, n!)
3.1. Character of II(n°, 7). Put Il = II{(z% #!), and let xg be the character of IL.

Since II = Ind$n, we have the following expression of xg; from the general formula for induced
representations:

(15) xn(g) =/ X (kgk™) dving(k),
H\G
where the character x» of 7 is extended from H to G by putting 0 outside H, and vy is the

invariant measure on H\G giving mass 1 to each point, and k = Hk. Since H\G = 5([p)\S
is finite, (15) is rewritten, using the the normalized Haar measure p¢; on G, as

(16) xn(g) = |H\G] /G o (bgh™) duc (k).
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3. Character and irreducibility of IT(z°, 7})
Note that, for (u,s) € H = U x 5([p]), Xx((8)) = xx0((u, ")) xx1(s'), with a preimage
s’ € S([p]) of 5: s = Ps(s).

3.2. Irreducibility of II(x°,71).

Theorem 3.1. Let G = UxS with U compact and S finite. Then the induced representation
(7%, ') = Ind§(x° @ 7') of G in (14) is irreducible.

To prove this, we utilize the following lemma.

Lemma 3.2. Let p, be an IR of U, and define an IR 70 := p, - J, of H, := U x S([p,])’
similarly as 7° = p - J) of H' = U x S([p])'. Assume that p, is not equivalent to p. Then, for
any s' € S([p])’, 8" € S([p])",

17 /Ux,,o((u,s'))X,,g((u,s”))duu(u) = 0.

Proof. Note that the character xqo((u,s')) = tr(p(u)J)(s')) is, as a function in u € U,
a linear combination of matrix elements of p. Similarly x»o((u,s")) = tr(p.(u)J) (s")) is a
linear combination of matrix elements of p,. On the other hand, any matrix element of p is
orthogonal in L?(U) to any such one of p,. Hence the assertion of the lemma follows. 0

Proof of Theorem 8.1. Put I = II(#% =!). Note that II is irreducible if and only if

(18) xnl? = /G ()2 dia(g) = 1.

Then it is enough for us to calculate the integral [, |xn(9)|® duc(g). It is equal to

H\GP /G / /G Xl gh T xn(Ragh 1) dua (i) dis k) dio)
= |H\G? fG fG %= (9) Xe (kT du (K) s (g)
- / / xr (1) X CRRETY dugpn (k) duss () =: I (put).
HJm\G -

Take a complete set of representatives of H\G = S([p])\S as {s; € S; ¢ € Q} with 5., = e.
Then

(19) I= 3 [ o) xeloghsg ™) dan ().
q€Q

On the other hand, for A’ = (u,s') € H' = U x S([p])' with h = (u,s),s = ®5(s"), we have
sqhsy ' = (squs; ', 84857 "). Hence

(20) { xx(h) = tr(p(u)J)(s") - xx1 ('),
Xr(sghsg!) = tr(p(squsy ) T5(s8'sy ™)) - xom (85's, ™),

wher(:s; € S([p])’ is a preimage of sg: Qi,]g(s;) = 5,. For any s4, ¢ # qo, since sq € S{([p]).
IR % p is not equivalent to p, where (%« p)(u) = p(s;us,'). Therefore, taking into account
dup (h) = duy(u) dus(,)(s) for h = (u,s) € U x S([p]), and function form in (20), we can

apply Lemma 3.2 to the integral term in (19) for ¢ # go, and get = 0. Thus, by applying
Lemma 2.1 to the case of ¢ = gg, we obtain, as is desired,

L= [ e dun(h) = 1 .
H
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3.3. Orthogonality of characters xn- ‘ For G =U % S, let {pl ; IRofU, i € Iy, 5}

be a complete set of representatives for U/S, and for each i € Iy;s, let {71' 7€ Ji}
be a complete set of representatlves of equlva.lence classes of IRs of S([p:])’ w1th factor set
inverse to that of J,,. Put H; := U % S([p:]), = U % S([p:]), mi; = 7P T x};, and

I,; = (2,7} ;) = IndH i Deﬁne a set of IRs of G as

(21) QG) = {IL;; :=T(n?,n}}); i € Iy,s, j € Ji}-

Theorem 3.3. For characters xm,

;> Hij € Q(G), there hold the following orthogonality
relations in L*(G):

1 if (4,5) = @5,
(22) <Xl’l.~,;., XH,-:_,-:>L2(0) = { 0 if (i,7) # (&,59),
Proof. The case of (i,5) = (¢',j') was proved in the proof of Theorem 3.1. Assume (i, ) #
(#',5"), and put I}, := (xm. ;> Xﬂ.-',,-')[,z(c)‘ Then, as in the proof of Theorem 3.1, we have

I}, = |HAG| - |H\G] / / X (9) X (RGFT) duce (k) i (a)-

.7

Take a complete set of representatives of Hy\G = S([p+])\S as {sq € S; ¢ € Q} with 54, = e.
Then

(23) 3,=% / Xores (B) X, (3qhsq ) diar, (h).

q€EQ

(1) For ¢ = 4/, similarly as the reasoning after (19), there remains by Lemma 3.2 only the
term for ¢ = go: I ’, = [y, Xmi, (B) Xn, 1 (B) dp,H (h). By Lemma 2.1, we know that =; ; is

irreducible, and that Tij 33 i - Therefore I}Y = é; 0, as is desired.
(2) Assume that i # i'. Since S-orbits of [p;] and [py] are different, there exists no s,

such that ’a-lp,-: is equivalent to p;. In the sum over ¢ € @ in (23), note that dug, (h) =
dpy (u) dpsip,i(s) for h = (u,8), u € U, s € S([pi]), and apply Lemma 3.2 again, we see that
the integral for any ¢ is equal to 0. So I’y =0, as is desired. i

Corollary 3.4. The set QU(G) in (21) of IRs of G consists of mutually inequivalent IRs.

4 Completeness of the set ((G) of IRs

Let us prove that the set Q(G) in (21) of IRs II; ; = II(n?,n} ;) is complete, or that our
method of induced representations gives essentially all IRs of G.

Theorem 4.1. Let G =U x S be such that U is compact and S is finite. Let U(G) be the
set of IRs of G defined in (21). Then Q}(G) gives a complete set of representatives of the dual
G.

For the proof, first note dim1l;; = dimm;; - [H;\G| = dim p; - dim 7} ; - |S([p:])\S|. Recall
that {r} ;, j € Ji} is a complete set of representatives of spin representations of S([p;])’, viewed
from the base group S([p;]), of a fixed factor set (the inverse of that of J,). Then we have, by
Lemma 1.1(i), 3;¢ , (dimn};)? = |S([p:])|, whence

(24) 3 (dimIL;)* = (dim pi)? - |S([p:)\S| x |S].

JE€Jd;
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4.1. Proof in the case where G is finite. Assume that G = U x S is finite. Under
Theorem 3.3, to prove the completeness, it is enough to establish the equality:

(25) 3> (dimI,)* =G|

., €(G)

Note that (dimp;)? - |S([p:])\S| is equal to the sum of (dim p)? over [p| in the S-orbit of
[p:]. Since {p,; Iy, s} is a complete set of representatives of U/S, we have

3 (dimp)? - S(pD\S| = 3 (dimp)? = |U.
i€lys [p]eﬁ
By (24), this gives the desired equality (25), because |U]| - |S| = |G|.
4.2. Proof in the case where G is compact. Let G = U x S be with U compact and

S finite. In this case, to prove the completeness of the set Q(G) of II; ;’s, first we give the
following lemma, which corresponds to Lemma 1.1 for G finite.

Lemma 4.2. Let p be an IR of U. Then, the number of equivalence classes [II] € G of IRs
II of G such that |y contains p, or |y D p, is finite, and

(26) > (dimI)® = (dimp)*-|S([p])\S] -IS].

[Med:nlyde

Proof. Denote by M ,(G) the space spanned by matrix elements of IndU p- Then it is a direct
sum of spaces M(II) spanned by matrices of II, which appear in Indu p or [Ind p: 1] > 0.
By Frobenius reciprocity law [H|U : ] = [Ind p : I, the last condition is equivalent to
[l’lﬁ|u : p] > 0, that is, Il|y D p. Hence we obtain

27 dmM,(G) = Y (dimII)™
med: |y e

On the other hand, the space V [Indgp) is spanned by V (p)-valued functions f on G such that
f(ug) = p(u)f(g) (u € U, g € G). Therefore f corresponds 1-1 way to ¢ := f|s in F(S;V(p)),
the space of V (p)-valued L*-functions on S for which the norm is [|g||* = fg|l¢(s 8)lly iy dus(s),

where ||-||v(,) denotes the norm in V' (p). Denote by II, the realization of Ind$ gpon F(S;V(p)).
Note that, for s € S and go = (ug,s0) € U x S, we have sgo = (e,8)go = (suos 1 ssp), and so

(28) I, (g0)¢(s) = p(suos™) ((ss0)).

The space F(S; V(p)) is spanned by functions of the form @, 4(s) := v-9(s) (s € S), where

v € V(p), ¥ € L*(S). Take ¢1,02 € F(S;V(p)) as @i(s) = vi - 1hi(s) ( S) with v; € V(p)
and ¢, € L*(S). Calculate the matrix element for IT, as

(p(go)e1,p2) = / 0 (90)1(5),02(8))y ) Bes ()

= /S<p(su0‘9_l)vliv2>v(p) 1/)1(550)1/)2_(5)115(5) ( =: F(go) (put)).‘

For t € S, denote by ¢; the delta functions on S given as §;(s) = 1 or 0 according as s = ¢ or
not. Put ¢; = §,, for t; € S. Then

(29) F(go) = 187" - (p(tauoty Jv1,vz) ) - 614, (50)-

Here, the first factor, as a function in uq € U, spans the space M(['z 10]) of matrix elements of

an IR tz_jo of U. The second factor, as a function in so € S, 8;(sp) with ¢t = t{ltl spans the
space F(S) of all functions on S. Therefore we obtain

(30) dmM,(G) = > dimM([’p]) - dim F(S)

different [%p]
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= > (dim*%)®-|S| = (dim p)* - |S([PD\S| - |5].

(%]
From (27) and (30), we obtain the desired equality (26). o

Applying Lemma 4.2 above, we see that the completeness of the set (G) of II; ; is equivalent
to the following equality: for each i € Iy, s,

. 2 .
(31) Y (dimIL,;)* = (dimpy)? - S([pD\S] - IS].
jed;
However this is already proved in (24).
Remark 4.1. In his Chicago lecture note [Macl], G.W. Mackey discussed construction
of irreducible representation or factor representations of semidirect product groups U x S.
However the explicit statement such as Theorem in Introduction or Theorem 4.1 in the present

paper cannot be found for the case where U is compact and S is finite. It seems that his
discussion is beyond this classical case.

hirai.takeshi.24e@st.kyoto-u.ac.jp
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5. Appendix 1. Examples

5 Appendix 1. Examples
(Appendix 1, Appendix 2 are added for this report)

Example 5.1. Let &,,, n > 2, be the n-th symmetric group. Then, as an abstract
group, &,, is presented by giving a set of generators and a set of fundamental relations as
follows. As the set of generators, {s;; i € I,_1} with I, := {1,2,...,k}, and as the set of
fundamental relations:

Si2:6 (iEIn_l),
(32) $iSit18i = 8i418:i8i41 (¢ € In_9),
8;8; = 5;8; (1,5 € In_1, i = §| 2 2),

where e denotes the identity element of the group. The Schur multiplier H*(6,,C>) is
trivial for n = 2,3, and Z, for n > 4. A central extension &, by a central subgroup
Zy := {e,z1}, 22 = e, is given as follows: as a set of generators: {21, r; (i € I,_1)},
and as a set of fundamental relations:

zi=e, rmzm=2an (
(33) ri=e (i € Iny),
TiTi+1Te = Ti41TiTi4] (
TiT; = 21T;7T; (

and the canonical homomorphism &g : é,, — &, is given by ®g(z1) = ¢, Pa(r;) = 3; (i €
I, 1). For n > 4, the double covering group S., is one of representation groups of &,,, given
by Schur and denoted by %7, [Sch2, §3].

Let %, be the n-th alternating group, and 5[,1 =@ ! (,,) the full inverse image of A, C &.,,.
Then the representation group B, of 2, is unique, and is given by A, for n >4,n#6,7, and
is a 6-times covering group of 2, for n = 6,7 for which %, is a quotient group (cf. [Sch2, §5]).

Here we note that, for a finite group G, a central extension G' of G is called a representation
group of G if (1) any spin representation of G can be obtained from a linear representation of
G’ asin Lemma 1.3, and (2) among such central extensions of G, the order of G’ is minimum.
By Schur [Schl], any finite group G has a finite number of non-isomorphic representation

groups, and for every such G, the central subgroup Z in (8) is isomorphic to Schur multiplier
H*(G,C%).

Example 5.2. Let Z,, be a cyclic group of order m, for which the product is written
multiplicatively. Let y be a fixed generator of Z,,, and let D,(Z,,) be the direct product of
n-copies of Z,,, so that it is given by presenting a set of generators and a set of fundamental
relations as follows. As the set of generators {y;;j € I,} (y; is the j-th copy of y), and as
the set of fundamental relations

y;"=e (j € I,),
34 p '
e { yive = ey (4 k€ I,).

The Schur multiplier is given as H?(D,(Z,,),C*) = Z»"~Y/2 and so0 D,(Z,,) has many
kinds of non-trivial central extensions. N

Assume m is even. Then a central extension D,(Z,,) by a central subgroup Z, := {e, 23}, 2 =
e, is given as follows: as a set of generators {n;; j € I.}, and as a set of fundamental relations

Z22 =é€, NjR2 = 22M); (.7 € In)7
(35) n"=e (j € I,),

MMk = Z2Mk7; (U kel,_1,j#k),
and the canonical homomorphism ®p : Dy (Zm) = Dn(Z) is given by ®p(z) =e, Pp(n;) =
Y (J € In)
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Example 5.3. Consider the dual of the covering group Dn(Z,,) for m even. Its IRs p have
two kinds of spin types 82 = +1 given as p(22) = f21.
The non-spin case 8, = 1 is for one-dimensional characters of D,(Z,,). Put

(36) { Fn:={7=(71172)"'17n);057j<m(jeI")}’

For v € T, define one-dimensional character ¢, of f),,(Zm) by ¢, (n;) == w?, where w :=
exp(2ri/m) is a primitive m-th root of unity.
For the spin case 8, = —1, introduce 4 matrices in the unitary group U(2) as

N e )]

and put Y; € U(2%), j € Iyk4y, with k = [n/2], as
Yg,‘_l = C®(i—l) RaR E®(k_‘)
Yo; = ®U-1) @b e®k—i)
Yars1 =@V e,

where z®P denote p-times tensor product of z (z®P is absent if p = 0).

(fOI' i€ Ik)’

Fact 5.1. Put E := Ex the identity matriz of degree 2, then there hold
sz = E (4 € Inks),
(38) ;i = =YY, (Gil€lng, j#l),
KYQ"'Y2k+1 = ZkE (2=V—1)

For generators {z3, n; (j € I,)} of Dn(Z.), put for y € Ty,
(39) Py(29) == —E, Py(n;) :=¢my)Y; (5 € Iy).

Then P, maps the fundamental relations in (35) isomorphically as seen from Fact 5.1 above.

Hence P, gives a spin representation of f),.(Z m)- Actually the family of P,’s covers all equiv-
alence classes of spin IRs of it. To discuss such things, we utilize the character xp, of P, given

in [HHoH2, Theorem 6.3]. Express d' € D, (Z,,) uniquely in the following form:
(40) d =zpn2 9%, b=0,1, 0< a; <m(jel,).

Theorem 5.1. The character xp, of IR P, of f),,(Zm) is given as follows.
(i) Assume n > 2 is even. For d' € Dn(Zr) in (40),

) An/2 ¢ (d)(-1)%, ifa; Saz=-- = a, =0 (mod 2),
xp,(d) = .
g, otherwise.

(ii) Assumen > 3 odd. Ford' € fJn(Zm) in (40),

2n/21. ¢ (d)(-1)®, ifa;=a;=---=an =0 (mod 2),
xp, (d) =< (22 ¢ (d)(-1)*, ifai=ay=---=a,=1(mod2),
0, otherwise.

Let j € In. For a parameter v = (v;)jer, € Tn, put 7y = (Vi)jer, with v}, = 7, +
m/2 (mod m), v; = v; (§ # p)-

Corollary 5.2. (i) Assume n > 2 is even. Then P, = P ,(yeTl,, pel,).
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(i) Assumen >3 odd. Py = P, . . (y€Tly, p,q€I,p#4q).

When n is even, for ¥ = 0 = (0,0,...,0), put P := Py, and when n is odd, put P, :=
Py, P_ := P, ¢ with 7,0 = (0,...,0,m/2). Then, as a complete set of representatives of
equivalence classes of spin IRs, we can take the following:

{P,=¢,®P; yeT%}, for n > 2 even,

(41)
{P,=(, ®Py, P, =(,®P_; yeI?}, forn >3 odd.

Example 5.4. Consider a semidirect product group G = U % S with U = ﬁn(Z m) and
S = &,,where Gn-action is given as om; = n,(;) (0 € &, j € I,). We see from (35) that
this actually gives an action. Take an IR p = P, of ﬁn(Zm). We determine the stationary
subgroup &,([p]). Then we calculate explicitly intertwining operators J,(s) for s € G,([o]).

Note that, for 0 € &,, (°7'P,)(d") = Py(o(d')), and that ° P, = P, if and only if their
characters conincide. Then we can determine, from the character formula in Theorem 5.1, the
stationary subgroup 6,([p]) of [p] in &,, for p = P,, P, as follows.

Proposition 5.3. Let vy e I'9.
(i) Whenn > 2 is even, 6,([P,]) = {0 € Bn; 07 =17}
(i) Whenn > 3 is odd, G,([P,]) = Gu([Pr,+]) = {0 € Un; oy =~}

Denote the subgroups in (i) and (ii) above by &,(v) and 2, (v) respectively.

Note that oP, & P,, (6 € 6,,) in case n is even, and that oP, = P,, (¢ € A,) and
oP, = P, 5, (0 ¢ A,) in case n is odd. Then we see that, among o+ there exists a standard
element (denoted again by <) such that

(42) N<1L . <M

Hence we have a set of representatives {P,} in case n is even (resp. {P,, P, ,} in case n
is odd) of &,,-orbits in spin dual of ﬁn(Zm) for which v € T% satisfies the condition (42).
An advantage of this condition is that &,([p]) for such a representative [p] is generated by
simple reflections if n is even (resp. products of two simple reflections if n is odd) and so the
intertwining operators J,(s) can be given using simple reflections if n is even (resp. products
of two such ones if n is odd).

Lemma 5.4. Put V,(z):= —E, V,(r;) := 715(}2 ~ Y1) fori € I,_,. Then

vn(‘f'i)2 =FK (Z € In—l)v
(43) V,,(r,v)Vn(r,'H) + vn(ri+l)vn(ri) +E=0 (Z € Iﬂ—z)’
Vn(rj)Vn(rk) = —vn(rk)v(rj) (]ak € In—l’ -7 # k)

Moreover, for j € I,, V,(r)Y;Va(ri)™' =Y, ;.

From the first assertion, we can prove that the correspondence z9 = Vi,(22), mi = Va(ri) (i €
I,,_,) represents the set of fundamental relations (33) for the covering group &, and so it
defines a spin representation of &, (and of &, in our terminology). Moreover it follows from
the second assertion that, if s; € &,,(v),

(*Py) ;) = Py (8:(n;)) = Py(ns,(5)) = w0, (jy = Valri) Py(n;) Val(r:) 72,
and so J,(s,) = AiVan(r;) with a A; € C*. Thus J, is a spin representation of &,([p]) for
p = Py, given by restricting V, on it, and we see that 1° = p - J » is a spin representation.

Thus to obtain (non-spin) IRs of G = D,,(Z,,) x &,, we should take spin IR 7! of &, () or
of A,.(). Here we need a study on twisted central product of double coverings of finite groups
and twisted central products of thier spin IRs (cf. [HHo]).
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Example 6.1. Let M(N,C) be the algebra of all complex N x N matrices. When
N = 2* it has a special structure as follows.

Fact 6.1. The set of matrices of the form {Y'Y;? ... Y, 0% ; a; = 0,1 (j € Iak)} gives a
linear basis of M(2%,C).

Take {Y; (j € I.)} as a set of generators of the algebra M (2%, C), then the corresponding
set of fundamental relations are given by

(44) Y?=E (jeIw), YYi=-YY; (G#1I;51¢€Ix)

Three kinds of actions of permutation groups on M(2*,C) are given as follows: put Y; :=
(=1/7'Y; (j € I..), and

(6.1.1) For o € Gger1: oM(¥)) i=sgn(0) Vi, (€ Takta);
(6.1.2) For 0 € Gokr1: oD (Y;) :=5gn(0) Yo(5y (G € Toks1);
(6.1.3) For 0 € Gy o®(Y;) = Y5 (4 € Iak)

(accordingly Yort1 — sgn(o)Yari1),

where the upper suffices (1), (2) and (3) are added to distinguish different actions. To see that
these formulas actually give actions on the algebra M (2%, C), we refer to fundamental relations
in (38) for (6.1.1) and (6.1.2), and those in (44) for (6.1.3).

Consequently each of Goxy; and Gy acts, in its way, on GL(2%,C) = M(2F,C)*, the
group of all invertible elements. On the other hand, since every automorphism of M(N,C) is
inner, we have a regular matrix J(®) (o) (a = 1~3) such that ¢(®(X) = J@ ()X J(@(g)?
for X € M(2*,C). Hence, det (¢(®) (X)) = det X, and so these groups act also on.SL(2*,C)
respectively. For each a, the matrix J(®) (o) is determined up to a scalar multiple, and o
J() (o) may give a spin representation of the corresponding group. Actually it is the case and
here is the origin of Schur’s ‘Hauptdarstellung’ of &, (cf. [Sch2]). The matrices J(*)(s;) for
simple transpositions s; (i € I,_1), corresponding to (6.1.1) ~ (6.1.3) respectively, are given as
J@ () = cia) V(@) (r;) with constants c{*’, for a = 1~3, where

-

i

1 ; .
(6.2.1) VW) = 7 Y! - Y{) (i € Inx);
1, .
(6.2.2) VA (r) = 7 (Y; = Yin) (4 € Inp);
(6.2.3) VO@r;) = VO(r) - V=1Yarsr (i € Ink1).
We can prove by calculation that
V(l)('f'i)z =F (7' € I?k—l))
(45) V(l)(T,')V(l)(T,'+1) + V(l)(r,-+1)V(1)(r,-) +E=0 (i€ I_s),
VO (r) VO (7)) = =V (r;) VO (7)) (i # 7).

This implies that the fundamental relations in (33) are isomorphically mapped by r; — V1 (r;)
with V)(z;) = ~E, and accordingly we see that V(1) gives a spin (unitary) representation of
S,,n=2k+1, and that s = JV(s) (s € &,,) is a spin (or double-valued) representation of
G,.

Similar arguments can be given for V(®)(r;) and J(®)(s) for a = 2,3, and see that J®(s)
(resp. J®)(s)) is a spin representation of &,,, n = 2k + 1 (resp. n = 2k).

Example 6.2. The group SO(n) acts on the n-dimensional Euclidean space V,. Let
{f1,f2,-.., f»} be an orthonormal basis of V,, then &, acts naturally on V,, by permuting
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fi,f2,---, fn, and &,, is thus contained in O(n) and acts on SO(n) by conjugation. On the
other hand, the universal covering group Spin(n) of SO(n) is realized as follows [Che, Chap. 2].
Let &, := {e;; j € I} be the set of generators (over R) of Clifford numbers €., with the
identity element eg, which is defined by the set of fundamental relations

ej2 = —€ (.7 € In)y €€ = —€r€; (]ak € Inv .7 # k)
Then &, acts on &, as o(e;) 1= e,;) (or as o(e;) :=sgn(o)e, ;) for j € I, and so does on
%, and also on €,X. The covering group Spin(n) is defined as the subgroup of €, generated
by exp(fe;e;) = cosfey + sinfeje; (j # 1), and it acts on the space V,, = {e; (j € I.))r,
spanned over R by e;’s, as V. 3 v' = w'v'u' "' = u(v') € V! («' € Spin(n)), which gives
the canonical homomorphism ®g0 : Spin(n) 3 v’ — u € SO(n) = Spin(n)/{tep}, under the
natural identification of V. and V,,. Hence &,, also acts on Spin(n).

The map eg — E, e; — \/—_IYJ (7 € I,) gives a representation of ¥, of dimension
2%, k = [n/2], and so exp(feje;) — exp (—6Y;Y;) gives a linear representation p of the group
Spin(n) such that p(—eg) = —F, and p is a spin representation of SO(n).

Here, one-parameter subgroups exp(fyez5-1€2,) (p € I), which generate a Cartan sub-
group H of Spin(n), are respectively mapped by p to

p(Bp) = exp (= 6,Yap—1Y2p) = e¥P 1) @ uy(6,) ® £®*~P)
with uz(8,) = diag(e ™", e').

Therefore all weights of p are multiplicity-free and of the form p = (£1/2, £1/2, ...,+1/2).
The trace of ] ., vp(0p) gives the character x, of p: forh = h(61,82,...,0k) := [I ey, exp(fpezp_1€2p) ¢
H,

(46) xo(h) = Hpeh (€% + &%),

Proposition 6.1. (i) Suppose n =2k + 1> 3 is odd. The spin representation p of SO(n)
is irreducible, with highest weight A = (1/2,1/2,...,1/2) and dimension 2("/2 = 2% The
stationary subgroup of its equivalence class is S,([p]) = 6.

(i) Suppose n = 2k > 4 is even. The spin representation p of SO(n) is split into two non-
equivalent IRs p, and p_ with highest weight A, = (1/2,...,1/2, €¢1/2), € = £, and dimension
oln/21=1 = 9%=1 " and with characters

(47) Xo(h) = ) erireattn . genitn,

€1€2 € =E€
The stationary subgroup mn &,, is gwen as G, ([p+]) = An, and “(p+) = pz if sgn(o) = —1.

Proof. The image of p contains Y;Y; = exp (7/2Y;Y;) for all j #1 (j,1 € I,,).

(i) We see from Fact 1 that Y;Y;--- Y2 = ¢¥ Yau,1, and then from Fact 2, that the set
Y;Yi (j #1) generates the total algebra M(2%,C). This means that p is irreducible. The rest
of the assertions is proved easily.

(ii) Let V = C?" be the vector space on which Y}’s act, aud v, a non-zero weight vector for
p= (1, p2, ..., i), pj = £1/2. Then they give a basis of V. Let V, (e = £) be the subspace
of V spanned by v, such that pyps---pr = €l, then V=V, @V_, and Y;V, = V_. We
see from Facts 1 and 2 that the set of Y;Y; (j # 1) generates a subalgebra M, of M(2*,C),
and so the algebra (p(Spin(n))) generated by the image of p is M_.. Moreover M(2*,C) is a
direct sum of M, and Y; M, as vector space. By calculation we see that each V, is invariant
under M. In fact, the set {Y;Y;11; j € In_1} generates M, and Y5,_1Y2, commutes with
h(f1,...,0k), and
1

(YopYapi1)h(81,. .-, 0k) (YopYopt1)

gives parameter change (0p,0p4+1) & (—0p+1, —0,). The restriction of p on V; is denoted by p.,
and its character is given by the formwula in (47) since weights of V, is multiplicity-free. Once
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we identify the highest weight of p. as A. = (1/2,...,1/2,€e1/2), the rest of assertions can be
proved from the property of these IRs. o

Note 6.1. For h(81,0,,...,6:) € H, the action of Weyl group W,, of Spin(n) is given as
follows. If n is odd, then Spin(n) is of type B,,, and W, is generated by (1) any permutation
of (0p)per,, and (2) sign changes of any number of 8,’s. If n is even, then Spin(n) is of type
D, and W, is generated by (1) and (2') sign changes of even number of 8,’s.

When n is odd, the intertwining operator J,(s) (s € &,([p])) is defined as

(48) p(s(w)) = Jo(s) p(u') Jp(s)™"  (u' € Spin(n)),

and when n is even, similarly for p, and p_. From (6.1.2)-(6.2.3), we obtain the following.

Theorem 6.2. (i) Suppose n = 2k +1 > 3 is odd. The intertwining operators J,(s) (s €
S.(lp]) = 6,) for IR p of Spin(n) are given as J,(s;) = c; VP (r;) with constants c;, and
V@ (2)) = —I. So J, is a spin representation of &, and is lifted up to a linear (and spin)
representation V® of &,..

(il) Suppose n = 2k > 4 is even. For each of suffices + and —, the intertwining operators
Jos(3) (s € Sa([p£]) = Uy) for IR py of Spin(n) are given as J,, (sis;) = cij U(rir;) with
constants c¢;;, for i,7 € I, = I, where

(49) O(rir;) := VOV (r)) = (Vi - Y )(Y; - Vi)

B =

Here, together with U(z1) = —I, U gives a linear (and spin) representation of the double
covering group A, = @G"I(an) of U, which is generated by {rir;;i,j € I,}. So J,, is a
spin representation of U, and is lifted up to spin IR J,, = U of A,.
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