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ABSTRACT.  The microscopically-description of hydromechanics equations are followed by the descrip-
tion of equations of gas theory by Maxwell, Kirchhoff and Boltzmann. Above all, in 1872, Boltzmann
formulated the Boltzmann equations, expressed by the following today’s formulation :

3zf+V-fo=Q(f,g), t>01 X,VER"(n23), x=(:z:,y,z), v = (Ev"lc)v (1)
QUM = [ [ Bl ve,o}avf ) = glvn)f(0)}dodun,  g(u2) = gtz vl ete. (2)
R3 Js2

These equations are able to be reduced for the general form of the hydrodynamic equations, after
the formulations by Maxwell and Kirchhoff, and from which the Euler equations and the Navier-Stokes
equations are reduced as the special case.

After Stokes’ linear equations, the equations of gas theories were deduced by Maxwell in 1865,
Kirchhoff in 1868 and Boltzmann in 1872, They contributed to formulate the fluid equations and to fix
the Navier-Stokes equations, when Prandtl stated the today’s formulation in using the nomenclature as
the “so-called Navier-Stokes equations” in 1934, in which Prandtl included the three terms of nonlinear
and two linear terms with the ratio of two coefficients as 3 : 1, which arose Poisson in 1831, Saint-Venant
in 1843, and Stokes in 1845.
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1. Introduction

We have studied the original microscopically descriptive Navier-Stokes ( M DN S ) equations as the
progenitors 2, Navier, Cauchy, Poisson, Saint-Venant and Stokes, and endeavor to ascertain their aims and
conceptual thoughts in formulations these new equation.  “The two-constant theory” was introduced
first introduced in 1805 by Laplace ® in regard to capillary action with constants denoted by H and K.

Thereafter, various pairs of constants have been proposed by their progenitors in formulating MDNS
equations or equations describing equilibrium or capillary situations. It is commonly accepted that this
theory describes isotropic, linear elasticity. * We can find the “two-constant” in the equations of gas
theories by Maxwell, Kirchhoff and Boltzmann, which were fixed into the common linear terms, and
which originally takes its rise in Poisson and Stokes.

The gas theorists studied also the general equations of hydromechanics, which have the same proportion
of coefficients as the equations deduced by Poisson and Stokes with only the linear term and the ratio of
the coefficient of Laplacian to that of gradient of divergence term is 3 : 1. ( cf Table 2. )

2. A universal method for the two-constant theory

In this section, we propose a universal method to describe the kinetic equations that arise in isotropic,
linear elasticity. This method is outlined as follows:

o The partial differential equations describing waves in elastic solids or flows in elastic fluids are
expressed by using one constant or a pair of constants C; and C; such that:

52
for elastic solids: a—t‘; —(C1T1 + CoT3) =1,
. N du
for elastic fluids: 5 (1T + CoTo) + -+ - =1,
where T}, T3, -- are the terms depending on tensor quantities constituting our equations. For

example, the NS equations corresponding to incompressible fluids consist of the kinetic equation
along with the continuity equation and are conventionally written, in modern vector notation, as
follows:

o
8—‘:—#Au+u.Vu+vp=f, div u = 0. 3)
Here u is the velocity, f accounts for the body forces present, p the pressure and

A =YV -V the Laplacian operator.

1(J,L) Throughout this paper, in citation of bibliographical sources, we show our own paragraph or sentences of commen-
taries by surrounding between () and (ft).  ((f}) is used only when not following to next section, ). And by =", we detail
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by
original authors. The mark : => means transformation of the statements in brevity by ours. And all the frames surrounding
the statements are inserted for important remark of ours. Of course, when the descriptions are explicitly distinct without
these marks, these are not the descriptions in citation of bibliographical sources.

2(J) To establish a time line of these contributor, we list for easy reference the year of their birth and
death; Sir INewton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d’Alembert(1717-1783), Lagrange(1736-1813),
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857),
Saint-Venant(1797-1886), Stokes(1819-1903). The order in our paper below is by date of proposal or publication.

3(4) Of capiliary action, Laplace[21, V.4, Supplement p.2 ] achnowledges Clailaut [6, p.22], and Clailaut cites Maupertuis.

4(4) Darrigol [10, p.121].
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e The two coefficients C; and C, associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, € and E were
introduced by Navier, R and G by Cauchy, k and K in elastic and (K + k) and M in fluid
by Poisson, £ and § by Saint-Venant, and p and § by Stokes. Since Poisson, the ratlo of two
coefficient in fluid was fixed at 3. Moreover, C; and C3 can be expressed in the following form:

C = [:Tlngl, S = ffg3 — (s, = Ci = C3£T191 = %Erlgly
Cy = L2925, = [fgs — C4, Cz = C4Lrags = 3 Lrago.

Here £ corresponds to either Zg" as argued for by Poisson or f0°° as argued for by Navier.
A heated debate had developed between the two over this point. It is a matter of personnel
preference as to how the two constants should be expressed.

e The two constants depend on two radial functions r; and r; related to the radius of the active
sphere of the molecules, raised to some power of n for Poisson’s and Navier’s cases; the relationship
between these functions can be expressing by a logarithm with base r such that: log,. :2 =

e ¢g; and g are the kernel functions having both

— the physical caracteristics come from the fluid dynamics described by the microscopically
basic relations of the attraction and/or repulsion and
— the mathematical requirements for the rapidly decreasing function.

e 51 and S, are two expressions which determine the angular dependence on the surface of the
active unit-sphere centered on a molecule through application of the double integral (or single
sum in the case of Poisson’s fluid).

e g3 and g4 are certain compound spherical harmonic functions determining the momentum over
the unit sphere.

e C3 and Cj are indirectly determined as the common coefﬁcients derived from the inva.riant

tensor. With the exception of Poisson’s fluid case, C3 of C; is 2%, and C; of Cs is 15 , which are
evaluated over the unit spheres for each molecule, and which are mdependent of the preference
in using integrals or summations. In Poisson’s case, we obtain the same values as the above after
multiplying by ﬁ. The integrals are calculated from the total momentum of the active sphere
surrounding the molecule.

e The ratio of C5 to Cy : —3 = — including Poisson’s case.

2.1. Poisson’s Fluid pressure in motion.

* §63.
5 Poiss01§1’s tensor of the pressures in fluid reads as follows :
(7-T)ps
Uy U, Us B+ 5(%‘;+‘3—;‘;) p-adft - L& ol
ORI ﬁ%+i‘£ ot - Gt 1op B(R+%) |
S -t - %‘fﬁLzﬁz s(E+g) sle+e)
(k+Ka=p, (k—K)a=f, p=yt=K, then B+ =2ke, 4)

where xt is the density of the fluid around the point M, and ¥t is the pressure. Here we can replace the
first column with the third one, then we see easily the conventional style of array as follows :

. B8 d du du 4 dv du | dw
Us Uy U, 1 a'ff - 2B 5(:1;"':1;) Bla:+ %
I 5(3—;+z; p-alit _ oy opl gy duy |
W, W
3 W2 W 5(%"'% 5(%_*_«3_1;) p—atdt_ i_x__,_zgccii_t;

i

xt dt

5(LL) In Poisson [35], the title of the chaper 7 is “Calcul des Pressions dans les Fluides en mouvement ; équations
defferentielles de ce mouwvement.”
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TABLE 1. The two constants in the kinetic equations

[noname problem  [Ci]C2[Cs [Ca [ [rifrafgs g2 [remark
1 E;’rer elastic solid |¢ Zn I3 dole®| |fe p : radius
2 E;Tler fluid e s I~ dolpt| |F(p) p : radius
E = | fde |0 F(p)
system
Cauchy of particles 2 oo 3 - R
3 5] in elastic R ZA o7 drlr f(r) f(r) = £frf'(r) - £(r)]
and fluid
F(r) # f(r),
G A dr) r® +f(r)| A = & mass of molecules
per volume.
4 E‘;‘]SS‘”‘ elastic solid [k | |22 2 18| |dedr
K |z x| b
Poisson elastic solid } d.lfr - o
5 [35) and fluid |* | | s |TF Co=z =35
K & fr [Ca=g£F =1}
Saint-Venant|, . R
6 [41] fluid € |5
Stokes . B
7 [42] fluid o |&
Stokes
8 elastic solid |A (B A=5B
[42) a
The elements of velocity u = (u, v, w) are :
dz " dy dz
—- = U, — =7 —_
dt di .
dz _ d d d d
d_;g‘. j“f+ud—':‘+vﬁ+wﬁ,
‘fi—giﬂ =9 +vdy +wl,
%f- =%+ ui'ﬂ + v + wd—"’
o= _adzlzt B+ 8 dxt 5y
=PToTy Xt dt’
a
2
P(X"%sz')=?i—f+ﬁ(g—'z+%v+z—r)
2
(7-9) ps p(Y - %5‘) = dw + ﬁ(:}l—r + 23+ 3—7)7 (6)
2
o2~ 55 = 42 + (L + By 1+ Ey)
%(4) (7-9) ps means the equation number with chapter of Poisson [35]
If we put f = (X, Y, Z) then (6) becomes as follows :
du ﬂ
A + Vw =f 7
Fri (7)

2.2. Stokes’ comment on Poisson’s fluid equations.
Stokes comments on Poisson’s (7-9) ps as follows :
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TaBLE 2. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-
tions” was fixed. (Rem. HD : hydr(»dyna.mics, N under entry-no : non-linear, gr.dv :
grad.div, E : gr—éd; of elastic, F : rdu of fluid)
no|name/prob |the kinetic equations A JgrdvE TF
Euler X-1lde o gy ydu +w ,
1 |(1752-55) e _ 2 E
N |z, p.127) Y“Fg;;: +" 4o +wdz’ EtHtE =0
fAuid Z_%£=T+ud:c+v +wd:'
odz
Navi ;?ﬁ*ﬁf‘zp W+d_§:7+ dbda+2d§d:)
avier mdly _ d P %z
2 {aszn)py | E DN ?(T;‘} ~e(LH 3+ # + 230k + 235 )» e e |2
elastic solid %—%ﬁ-:z E’+W+3_7+2:a;c+2dbdc
where I1 is density of the sohd g is acceleration of gravity.
1dp a2 4% d d d d .
5 |Navier sE= X+5(3¢71 d—yf+ a;f”.iza"y +2az&"z) il Rl L el -
14 dv _ @ d d . 1
N;1§§7)[321 tE=Y+e T;f”m**fﬂmﬁ Loj_de_dy.y g,y e |2 3
ui 14 2w dw _ o d d .
TR =Zre(TH+ X +32;f+2axaz+2dudz)—d—'f~ﬁ‘“—# L
Cauchy 2
(1828)[5] (L+G)g—:§+(R+H)—5+(Q+I)a~,§ +2R6:6y +2Q6:6x+xzaé’ it
2 Vi
4 |system (R+G)a—¥+(M+H)—§+(P+I)—§+2P5—-5‘;+2Rm%+}’=-?,—t?, Btloe (G
of particles 82 G =0
o st Q+O)ZE+(P+H) TS+ (V+ DTS +2Q 0L +2PR L + 2= 2f, L
. G=H=I, L=M=N, P=Q=R, L=3R
and fluid
Poisson 2y 2fdu 2 a2 2 42 182 | 142 nd?
(1831)[35] X-GFta (gv"+§ag.i;+n—;ﬂ+§@'v‘+sﬁ =gt .
. . 2
5 giastncszild Y- ‘j—7+u2(j?y+§fm‘;+§;’z;‘;+§‘fz¥+§—jﬁ)=%j—ﬁ:, « |2 |3
in gener 2 d 2 d2 2 42 142 142 _nod
equations Z- T“D—+a (E‘w—+§dzd“z+§dy;z+§ﬁ+§#)—;d—z‘§’ L L
Du _ dp d%u | 4%y | d” a d (du | dv (dw) -
o(By = x4+ 22 +a(K+k)(§y+ §%+;2;%) +3K+h)E(+ 2+ =0,
poiwon |25 VB et (G + S+ 53 g UG (4 6+ &) =0
2 2
(1831)[35] ,a(‘l’)t -2) .y +a(K+k)(d—7 +ee L) s+ (R+ 2+ 2) =0,
s3 s 2 2
6 |fuid in p(X - W)— +a<m+7+ﬁ>, 15 3
gener: 53
equations |17~ d—,#) = G +AGH + ok W b
ﬂ(Z—Ez)" +5(d_:7+ &7 +-d7'f—)
WHEREpr—aJd%— @7%—};. —oK + k)
Saint-Venant
7 5118'33) [41]  |His equations are none in [41], however his tensor is in Table 5 (4). e |5 3
ul
Dy _ du L dv | dw)
Stokes A5t - X+ & EtatE)=0
8 21%9)[42] (12)s p(%E—Y)+§E u 5§+3—;+%)= \ u |4 3
u (2 —z)+—2—u 41 g0y du)=o
Maxwell pde 4 21’- CM =pX
a i
o |(1865-66) . c ) Y c
(29] pg; + 42 ay —Om ) = pY, where, Cpy = #to0; CMm |5 3
HD 2y dr_cy 2wl = gz
Kirchhoff Wit + 5~ Ox 1ds | 8uyguydw_yg
10{(1876){18) wdt+ P -0k {u c T os oy 1o =0 cx |2 3
HD e . B where, Cx = kT
Ha + 55~ Cx |
Rayleigh dp _ _ d d
11 1)’ & —1;522 “+uV2u—uz—:—va~5, du dv __
N |(1883){40] {ap 2 , +& =0 v
HD sdy = +qu-u——vdy v
a L ov )| =
Boitzmann pat R)Au + ?9— B_: + %)) = X,
12|(sesar (2218 pat + Jl Rr[av+ %‘%(a +82+ 2] =y, R |2 3
i oo+ For[au+ 12 (G4 f+g) =02
y z
Prandtl
13
N |(1905)(38] L VV +V(V+p)=kV?, DIVv=0 k
HD
e I R e L )+u( + 2y 8
(1934){39] By pBz " 308z ag 5t —7 W P I3 3
Nlup FOR INCOMPRESSIBLE, 1T 1S SIMPLIFIED DIV w =0, Z¥ =g ~GRAD p+ qu 3 ||
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TABLE 3. Geneology of

tensors

‘T name tensor ( 3x3 ) coefficient matrix ( 3 x 5) in equations
t‘g_f —e(Biuk s+ vy + ) We define the coefficient matrix in elasticity :
(5-4)e de . dv . 4 4 y B C% : the coefficient of
du | dv 4 dw du 4 dv dw | du 2 2 2
3d:+dy+ dz) (dy+d: d:+dz %"7‘. 2_2‘7‘. g—z"!‘- 5‘% aaziiu;
- du | dv du 4 g3dv 4 dw dv | dw 5 Y t z 3
E + +3 + q + p) %y o%v v Fw 3%u
Navier dv " dz/ \dz T Tdy T d: dz T dy 5% G off oydr xdy |
L1 astici do gy ﬂ+"'—"’) (ﬂ+@+3d—‘” oty e ot w87
elasticity dx gz gz gy ddz ddy dz SH SE SE s s
'3 U v W u
PYIC AL S N then
U v v 3] W
= —€ d—y+fz_ €+2q E+W , 311 2 2
dudu  dvide oy ode (6ye = Cg= —e| 1 3 1 2 2
T ™ g P ¥ 4 1132 2
where e= 3¢+ ¢+ B
tij = (P — eui,k)di5 — e(va; + 5,4 Similarly, we define the coefficient matrix in fluid : C.
f_ ggdu du 3 dv (d_w ﬂ) T
) €-23 -e(mtm)  —dE+E , which contains p in (1,1)-, (2,2)- and (3,3)-element.
Navier _e(du 4 dv ' _ggdu _ (@ 1_12)
-2 g id e($+ 32) € —2eg, e(g; + iy ) p-3 —-e - -2 -2
,_5(%+dd_: _E(%+%) e —2e57) C:;: - p—3 —g -2 -2
where e’=p—e(‘;—‘;+§—"+% —& —€ p—3 ~2 -2
Cauch ti5 = Mk k0is + w(vij + i) L R Q 2R 2Q
sy’;‘:e; (60)c 6)c=>Cs= | R M P 2P 2R
2 k(9 | @ k(2 2
o |(contains kgs +Kv §(5§+3:=1) 5(5s+38 31 1Q2 P2 N 2Q 2P
kfag 8 2 k({2 2
bloth E(E+20) kP+Rv E(Sm4+ 3 ) =~ rl1 31 2 2}
elastici k{9 . o k{on @ 2 !
andﬂug) | 5(%+5) 5(3+%) k% kv 113 22
where V'=2n+%‘?+g‘§ where P=Q=R, L=M=N, L=3R
(6)pe
X -4
2 +u2((g‘2u+zd2u +gd’w+;42u+;d’u)=0
ti; = —“—3—(6,»]-11,,",‘ +ui; + ) .;—17 3dyds " 3dzdz T 3dy? T 3dz? '
©)pe d d d d d Y- dT} 2 2 2
. u u 1w u 2
gafoison | L <P Gr% EtE ra (254 3+ 38+ 5 + 1) =0
elasticity | —%- du 4 dy €+ 292 dv | dw 2 v v
3 dy daz d: dz d. ’ Z— d*w
do pdu gyl 0 oM AT
dz T dz dz ' dy dz a2 d2w+zd,u+2d2u+ld2w+ld2w)=0
where ¢= 92 4 dv 4 dw dz2 T 37dzdz ' 3dyds ' 3dz? ' 3 dy? ,
dz T dy © dz 311 2 2
»Ca= -22| 131 2 2
113 2 2
w+ B B Jél 00
tiy = —pbi; + Avg k85 + p(vi ; +v;5,4) (79)p;r = Cl= B w+8 B 00
(7T ps B B w+B 0 0
d ds d d: d According to Stokes: if we put
poison | | Sl ) 0(5 &) nrosl oty
3200 Bﬂ‘{'d—w "+23ﬂ Bd—u+d_u w=p+§(K+k)(E+E§+E>
fluid dz dy dy dy T dz ’ o 48 B 8 B B
d d d d d 3
nrooge p(E+d)  A(e ) L= | st g BB Sa2s
dyt dxt
where = p — a4t - £ 4 65 prse B2
Remark: oK +k)=3.
ti; = (5(Poz + Pyy + Pzz) — 2ok k)0 + £(vi ; +951)
= (~p— vk )b +e(vij + ;)
d d d
g df | dn dn dn , d¢
4 |Venant flay taz) "H2eg E(dz + dy) ! no description in [41].
. d d d d .
fluid € I&+% 5(2-"14—35) 7r+25—§§
where W=%(PI:+Pyy+Pzz) —%‘(%ﬁ+%§+%§)
d
= 2 d
= - m(%e k)
ti; = (—p ~ Suvkk)di; + plvij + v5),
tensor = —1 x 4an Lo
_ dv s\ _,fdu dv) _ f(dv |, du PTF BB 3 03
5 Stokes p: 2‘;(“(1 ) “(4Z+d’) I'L(ddz +dd1) (12)s = C{,: m —p+5§i v £ &
fuid (g @) -2 -0) - ) PRPRRISAE oy
g d dv | d d - - _1
_#(ﬁ_‘-g—“‘- ;“(T}+T$)p_2“(d_f" ) Remark: $p=2p(1- %)
where 35:2—;‘+d—"+7';-’
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TABLE 4. Geneology of tensors (continued.)

1|name [tensor ( 3x3 )
ti; = (=P — 34Uk,x)045 + B(vi,; + vj4), o B ]
0d d d 3 d 1y
g| Mavcwell P ke 3! - %) —wmer(Et%) -wmer(RtE)
: M d M d
fluid ~mer(E+5) romer(E 2k - %) -aer(B d:'é
M _(ow , & 3y a M_ (dy 4 d
_6""621’(% + 5 Gkﬂelp( t3) P Qkpeap(ﬁ _ T; 2%
tij = (—p — 2kv1 [)5, +k(vt,_-, + ‘UJ,,,),
—_ 98y _ du _ 8w , Bu
A|Kirchhott || P ks —kEtE k(32 +8e)
| ) e )
2 8
k(g2 +6, k(g +82) p-2452
tyj = (-p— FHUE k)‘s:] + (i g + v4,4),
du , B 2y, B 2
e[ SE VRN naem) ()
oltzmann 2 _1 Bu 611 dw dw
8 fuid R(;h + Z“ p- ma{ H(g+ v *or 2 (3 R
w a'l
L _R(B:’+8‘z‘ _R(a¥+ay) p- m{_“s(ax+a +a—w)}
where, R = ﬁé;p.

On this supposition we shall get the value of ‘“” from that of R} —
of page 140 by putting

du _dv _dw 1 dxt
dr  dy dz  3xt dt
‘We have therefore
dxt _« dxt
g = 3K~ 5K g
du dv dw 1 dxt
(7—2)}3: a;-i-@-FE———X—t—E.

Putting now for 3+ 4 its value 2k, and for ;‘1?;4&
expression for w, page 152, 7 becomes

dyt B+ dxt

T=p-q— — —m— L =

dt xt dt

~ (S —5k) +20 k)dtx;t—

du dv

dy
Observing that a(K + k) =
to the equation (12)g of this paper. ([42, p.119]).

Namely, by using «(K + k) = 8 in (4), we get the following :

ooty Bh( sty e

%ﬂ=5ﬂ+§%<z—“+dv+z~"
v v Y\ ax z
do _dp B ddu  dv , du
dz dz+3dz(dz+ + dz

then (6)( = (7-9) ps ) turns out :

8(y) Poisson(35, p.141]
W) ot (5)
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X)+ 4 +a(K+k(§—1§+%&+%§) “(K+k)di(d—;+§—;’+j—‘z”)=0,
Y)+—B+a(K+k)(d’"+§—;¥+§§#) SK+h)E (e + 24+ 42) =,
D)+ LraK+0)(4r+ L3+ L)+ 3K +RE(R+ 2+ 4) =0,
P -+ E-n(fr+dp+ i) -sh(R+2+3) =0
(12)s {o(Be-Y)+L-p(y+ s+ Ly)—sd(erdrde)=o
o -2+ E-n(fy+ G+ oy) - sE(r2+4) =0

Therefore, Poisson contains both compressible and incompressible fluid.

3. Genealogy and settlement of the stress tensor

In Figure 1, we have traced the genealogy of the tensor terms, in particular noting the form of each
tensor t;; appearing in the NS equations. These tensors are listed in Table 5, where we have differentiated
those tensors associated with elastic solids or elastic fluids. From this genealogy, it could be asserted that
Cauchy [4, 5] was the first user of “tensors” and arguably its inventor. This view is supported by the
admission of Poisson [35] that he received the idea of a “symmetric tensor” from Cauchy. Moreover, the
idea of tensor by Saint-Venant concurs with the work of Stokes. Here, we denote the two routes as NCP
and PSS, both of which are portrayed in our figure, and by which we can explain the genealogy of tensor
as it applies to the N'S equations..cf. Table 5.

Fig.1: A genealogy of the stress tensors in the prototypical Navier-Stokes equations
Navier([31, 32]®
7 t
(Euler)= | Poisson[34, 35]* = Saint-Venant[41]' = Stokes[42]'= Maxwell[29]" =Kirchhoff® = Boltzmann!
N 1@ /=
Cauchyl[4, 5]8
«—MD deduction— || « Non-MD deduction - Gas theory by MD deduction
«— NCP pattern — || — PSS pattern —
Legend for superscripted marks:
® Navier: g = —s(é,_.,uk K+ uij+ u_,‘.), 'j = (p— eug k)6i; — €(ui; + uj:)
¢ Poisson: tg = -—‘(‘suuk K+ ui; +uj, ‘l)i i = =pdij + Ak ki + p(vij +vi4)
§ Cauchy: 'f = Mg k8ij + p(vi,j + v50)

t Saint-Venant:

! Stokes: t; = (—p— %/.wk,k)éij + p(vi; +v54),

@ Poisson: stated his reduction of the number of independent ¢;; from 9 to 6 is due to Cauchy. (cf.§77)
bMaxwell: tij = (—p ~ Zpvi i )dij + plvi 5 + vi.0)

'Kirchhoff{18): ¢/, = (-p— 2kv; D8+ k(vij +v5)

YBoltzmann(1]: {7] =(-p- §R‘Uk,k)6u + Rvi,j + v5,i)

t1; = (5(Pez + Pyy + Pz2) — 23_5”':*)61'1' +e(ij +v54), §(Pea+ Pyy+ Pez) = —

We cannot ascribe to Euler a definite form for the stress tensor; however, Voigt[45] has presented a
version in 1905. ® He begins by introducing an exterior subscript index of the vector as also interior

8(4) As an aside, W.Voigt [45] states Euler equations with his invented tensor in 1905 as follows : ( we show his sketched

contents )

Auch hier sind die Ausdriicke fiir die Componenten nach den Richtungen der Tensoren Ty, T2, T3 -
auf denen eine Seite hervorzuheben ist - von Interesse ; es gilt nimlich, wenn diese Richtungen wieder
durch die Indices 1, 2, 3 characterisirt werden, hochst einfach

(19)v [B.Th =B1. 11, -
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indices to the product of elements.
[BT]I = Bl.Tl, s

Then he defines the derivative of the synthetic function as follows: ¢

d _ dw o
ST =D = (37)v [T. E] + [w.[w.:r]] =p;
Here, he defines two vectors as follows:
T1 w1T1
[T] = T , [wT]= we Ty
T3 w3T3

then if T}, are independent of time, we can deduce the vectorial form of (37)v:

TldTu;L + ZU2’LU3{T3 - Tz} =Dy,
Tz%%z + waw {Th — T3} = Dy,
T3%‘;‘" + ‘LU1’LU2{T2 - Tl} =Ds

He states that these are the Euler equations as expressed in tensor form.

4. Drafts of 'On the dynamical theory of Gases’ by Maxwell

4.1. A progenitor of gas theory after Poisson and Stokes.

({) Even after Poisson, Saint-Venent and Stokes, we can cite the progenitors of microscopically de-
scriptive, hydromechanical equations, which are specializes in gas theories, in which they describe the
hydrodynamic equations, and they contribute to fix the tensor and equations of N.S, so we have to trace
them. cf. Table 2, 3, 4.

Maxwell [29] had presented between late 1865 and early 1866, the original equations calculating his
original coefficient, with which his tensor coincides with Poisson and Stokes, and his gas theory prior to
Kirchhoff [18] in 1876 and Boltzmann [1] in 1895 as follows: (f})

if the motion is not very violent we may also neglect %(p{2 — p) and then we have
M du dv dw
2
=p- (22~ 2 - 52) 9
Eo=rp 9kp92p( dz dy dz ®
which similar expressions for n%p and ¢2p. By transformation of coordinates we can easily obtain the
expressions for &np, n{p and (£p. They are of the form

M dv  dw
Cp = _skpez”(ﬁz + Eg)

Bei Benutzung dieses Resultates und bei Beriicksichtigung der Constanz der Componenten von T
nach den mit dem Kéorper bewegten Axen nimmt die Gleichung (32)y ( dit[w.T] = D) die Form an

(10)

(37v [T.%‘tﬁ] + [w.[w.T)] #D,

es ist dabei zu beachten, daB dieselbe iiber die Richtungen, nach denen die Componenten der in ihnen
auftretenden Vectoren zu nehmen sind, noch weite Freiheit 1a8t.

Der wichtigste Fall ist der, dafl jene Richtungen in die eine Seite der Tensoren Ty, T2, T3 - die
Haupttragheitsaxen des Korpers - fallen. Hier reducieren sich nach (19)y die Componenten von {w.T]
auf wiTy, w2T2, waTs, und es folgt, da die T}y, von der Zeit unabhingig sind, aus (37)v,

Tl%l + waws{T3 — T2} =Dy,
To22 4 wawi {7 ~ Tz} = Do,
_ T3 483 4 wiwe{Th - T} =Dy
Das sind die Eulerschen Gleichungen. [45, §11, pp.14-15.]

9(4) By #, Voigt means =, i.e. equality by definition.
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o€ Pk pEoCo X: Xy X. P T T
pbom g G |=| Y= Y, Y. =1 T B Tu |,
pEao  plomo PG Zs Zy Z T, T P

Having thus obtained the values of the pressures in different directions we may substitute them in the
equation of motion
poe + £ (pE%) + £ (pkm) + £:(08¢) = X,
p%e + 2= (pkm) + 2 (pm®) + L (omQ) = Yo, (11)
p%E + £(06Q) + £ (o¢n) + £(0¢?) = Zp.

This becomes as follows :

Qu  dp _ pM (d%w ( d®u | d’u 4 1d (du y dv dw

Pt @ e |l Tt @ timla T+ 3 )| =X

du 4 dp _ pM_[dPy , d%  d% 4 1.d (duy dv dw)| _

Poit 3@ ~okpos|d Tt T ar t3qglas Ty T )| =AY (12)
Qw  dp _ _pM (d’w 4 d®w  d®w | 1d (du y dv 4 dw)|_

Pt d s | T T tsnlEtat = pZ.

Maxwell states as follows:
This is the equation of motion in the direction of x. The other equations may be
written down by symmetry. The form of the equations is identical
» with that deduced by Poisson !? from the theory of elasticity by supposing the strain
to be constantly relaxed at the given rate
o and the ratio of the coefficients of V2 to f; 71, %f agrees with that given by Professor
Stokes, !! which means (12) equals (12)s.
The quantity g,%; is the coeficient of viscosity or of internal friction and is denoted by
4 in the writings of Professor Stokes and in my paper on the Viscosity of Air and other
Gases. [30, pp.261-262].

4.2. Law of Volumes.
In late 1865 or early 1866, Maxwell proposed this paper. It was likely that Boltzmann'? had got his
idea from this paper.
u, v, w are the components of the mean velocity of all the molecules which are at
a given instant in a given element of volume, hence there is no motion of translation.
&, m, ¢ are the components of the relative velocity of one of these molecules with respect
to the mean velocity, the ’velocity of agitation of molecules’.
In the case of a single gas in motion let @ be the total energy of a single molecule then

Q=3 M{(w+ &7 + W n)? + (w0 +HE +n2+ ()}
& =M(uX +vY +wZ).

it
The general equation becomes

%p%{u"’ +0? +wt+ (1+B)(E +n* + 42)}

d d d
+ E(w&” + vpkn + wpt() + d—y(w&n +von® +wpn¢) + = (upkC +vpnC + wp(?)

1d 1d 1d
+ 5&(1 + B)pe(E +n*+ %) + 5@(1 +BmE+7*+ )+ Ed—z(l +B8)pC(€2 +n* +¢%)
= pluX +vY + wZ).

10() The Equation(9) in [35, p.139], which we cite as (6) (7-9) ps above.
11()}) Stokes [42]
12(4) 1844-1906.
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Substituting the values of pX, pY, pZ

1 a 2 2 2
§p5(1+ﬂ)(£ +7° + (%)

du dv dw dv dw dw du du dv
20U 20V 2 0W av  aw aw | au au  av
toR e T +me(g; + dy)+p€£(d:c +dz)+p£n(dy+dx)
1 2,2 (% 91 K
+ e+ AE +rt+ (T + g+ 7))
= 0.
Deviding by p of both hand-side,
10
351+ AE +n* + )
du dv dw dv  dw dw du du dv
20U 24U | p0w av  aw aw  au au  av
+ ¢ d:c+n dy-l-< dz +n<(dz+ dy)+<£(d:c+ dz)+£n(dy+dz)
1 2 2 ey (% 90 %
+ S0+B)E +n +<)(dx+dy+dz)
= 0.

Ifweset R = -(H,z—ﬁ, then we get the second, linear term of the left hand-side by Maxwell is written by
tensor

Ou Qu 4 du Sw 4 Ou

p52 pEn p€C oz oz T dy 2] oz
_ dv Fel Jv v Fel

okn pm? png =-R (5;+a—; & (5+a—’;)

p&¢ p¢n p¢ (g¥+a_.; (Qzl_;_,l_Q%) du

which is 'general tensor’.

4.3. Determination of the inequality of pressure in a medium.

Co=p- i p(ate - ) e, MRyl duy
PP k0, P\ de "y ) TP TP T okpe,P\dr  “dy 4z )

M du dv dw - M dv  dw
2y=p— — p(= 2 9 = —— " =4 2=
Cr=p 9kp62p(d:c a2 2 )P kaezp(dz + dy)’

M dv  dw M dw du
{np = ——kaezp(zg + E)’ ¢Ep = —_—kaezp(a + E)

Here, the relation of the coefficient between (13) and (14) is the relation between ¢2p ( = 5%p = ¢2p )
and n¢p ( = &np = (€p ) become %7‘;%; = %(1 + %)%;. The left hand-side corresponds the coeflicients
of %—;-, %, ‘;—; ozn thez diagona;l of the right hand-side in (13). The right hand-side corresponds with the
coeflicients of Z—I‘;, ‘;—y? and %‘,‘i in (14).

Then we can construct the tensor which is completely equal to (27) as follows :

M du _dv _ d M du 4 & M d d
pE2 ptn pEC p— skpezp(Qﬁ - d_: - d_‘;’) - ekpe;p(a_z + a—:) - kaezp(—:, + E(f)
2 _ M 8y, @ M d dv _ d M dv 4 d
pln pm ol | = | —gree;P\E ) P ——9kpe,P(ﬁ ~ g -E) - ek,,e,P(zZ- + d—y) (13)
pEC pln pC M ow , ouY M By, Bw M du _ dv _ gdw
5%06;P\ 3z T 5z 03P\ T oy ] P~ wrpesPlaz ~ @y — 2z

Having thus obtained the values of the pressures in different directions we may substitute them in the
equation of motion.

p%t + 42 (0E) + () + L (0EQ) = X,
p%+ e (otm) + & (o) + £ omC) = Y p,
PS5 + £ (p6Q) + £ (oCm) + £(p¢?) = Zp,
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which become the following equations that are completely equal to (185) 5

M 42 d: d:
Pa¢+z§*€prg T:'f+ +w+§d("+”+ )} Xp,

P+ G2 P d—;+—,+ +§d£( +du g d ) =Yy, (14)
1d d
P+ - 6kp92{ _T+ +§d—( +E+ } Zp
Here, it tells of the equivalent in the structure between (13) and (14). If we set R = <2, then these

— 6kp©2?
equations are completely equal to (221)5 by Boltzmann. These facts state that Boltzmann had got his
idea of special form of hydromechanics from Maxwell.

4.3.1. ’Lectures on Gas Theory’ and Lectures on Heat Theory by Kirchhoff.
We introduce "Lectures on Gas Theory’ by Kirchhoff [18, pp.156-172]. He stated his theory citing only
Maxwell in 1868 basing on Maxwell’s theory as follows :

Wir wenden uns jetzt zur Betrachtung €ines Gases, das nicht in Ruhe ist, und folgen
dabei der Maxwell’schen Darstellung.

He says : “We turn here into the investigation of a gas, which is not stable, and follow the description by
Maxwell.” Afterward, Boltzmann referred many contents of gas theory from both Maxwell and Kirchhoff.
For example, Kirchhoff states three assumptions of the number of molecule : we will investigate the
change, which these integral operated in a time dt, where the time is infinitesimally small. We show the
change by —(—mdt. It consists of three parts :
. the,va,lue of Q enlarged by flowing into and flowing out a certain molecule in the parallelepiped
in a time dt ;
e The outer force on the molecules, such as gravity operate, make change its velocity ;
e By the collision of each two molecules in the parallelepiped. [19, Lecture 15, p.157]
which Boltzmann cites almost assumptions. In Boltzmann’s description about the condition no. 3,
(3) Those of our dn molecules that undergo a collision during the time dt will clearly have in general
different velocity components after the collision.

o ( Decrease : ) Their velocity points will therefore be expected, as it were, from the paral-
lelepiped by the collision, and thrown into a completely different parallelepiped. The number
dn will thereby be decreased.

e ( Increase : ) On the other hand, the velocity points of m-molecules in other parallelepipeds
will be throne into dw by collisions, and dn will thereby increase.

o ( Total increase by collision between m-molecules and mi-molecules : )} It is now a question
of finding this total increase V3 experienced by dn during time dt as a result of the collisions
taking place between any m-molecules and any m;-molecules.

In 1894, Kirchhoff, in Lectures on Heat Theory [19, p.194], stated hydrodynamic equations in incompress-
ible fluid.

1 18 (& 2 ow =uX
'udt+6: ﬂﬁ Au+§6_(6:+£+5) =pa,
1 13 (d 2 Sw =Y.
l"’dt+%e ﬂEA +§3§(3:+5§+-67) - ’
dw 9, 1 18 (a8 e dw = uZ
'ud_t+5§_§;£ A‘Z+§B_(6:+ﬁ+5) = B

vt Tty tEa T
Kirchhoff explains his viscosity term as follows :

Als solche werden wir annehmen, da %, v, w in dem Gas dieselben Werthe haben,
wie in dem festen Korper, also verschwinden, wenn dieser ruht; und daff die absolute
Temperatur im Gas, die E— mal einer Constanten ist, gleich ist der Temperatur des fasten
Korpers. - --

"Die mit & - proportionalen Glieder, durch welch unsere Gleichungen sich unterscheiden
von den in erster Anndherung geltenden, bedinden die Erscheinungen der Retbung und
der Warmeleitung. -- -

Die Grosse %E heifit der Reibungscoefficient. [19, §3, pp.194-5]
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[ (transl.) We assume it as such that u, v, w in the gas have each value in the solid, when these move,
and that the absolute temperature in gas which is equal to the multiplied by ﬁ of an constant, is equal to
the temperature of solid. ---  The proportional terms with i, by which our equations are distinguished
with one in the first adaption, bring up as the phenomena of viscosity and the heat conduction. --- The

term 3—1“3‘ is called by viscosity coefficient. - - -]

He introduces the real value of ﬁﬁ in his following context, which we omit it for lack of space.
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5. ’Lectures on Gas theory’ by Boltzmann

In general, according to Ukai [43], we can state the Boltzmann equations as follows: 13

atf+v'vxf=Q(f:g)1 t>07 X,VER"(RZ3), x:(z)yvz)v V'—“({,T],C), (15)
Q) = [ [ B v, o} ) - sto) f0)ldods., - g(s1) = olt,z,50), (16

, U+ Vs I’U+’U;| , vt “U—-’U.‘ n—1
= — —_— = —F T a 7
3 + g0 Y 3 + 79 g €S (17)

where,

e f= f(t, z, v) is interpretable as many meanings such as
— density distribution of a molecule
— number density of a molecule
— probability density of a molecule
at time : £, place : x and velocity : v.
e f(v) means f(t,z,v) as abbreviating ¢t and z in the same time and place with f(v')
e Q(f,g) of the right-hand-side of (15) is the Boltzmann bilinear collision operator.
e v-V,f is the transport operator,
e B(z,0) of the right-hand-side in (16) is the non-negative function of collision cross-section.
e Q(f; 9)(t,z,v) is expressed in brief as Q(f). v
e (v, v,) and (v, v)) are the velocities of a molecule before and after collision.
e According to Ukai [44], the transport operators are expressed with two sort of terms like Boltz-

mann’s descriptions : (114) g and (115) including the collision term V. - (F f) by exterior force
F as follow : 1

Bf+v-Vxf+V,-(Ff)=Q(f) (18)
Qf) = B(v — v., 0){f(v}) f(v') — f(v.)f(v)}dodw. (19)
R3 J§?

where, v - Vxf + V, - (Ff) are transport operators operating under the exterior force : F(¢, z,v) =
(F1, F, F3). The right-hand side of (18) is expressed in brief as Q(f) meaning Q(f)(t, z, v).

5.1. Development of partial differential equations for f and F.

We show the Figure 6 in the last page of our paper, which defines the model of the collision between
the molecule m; calling the point of it and the molecule m wich we call the point m. The instant when
the molecule m passes vertically throught the disc of my molecule, is defined as collision. We show
Boltzmann’s definitions as follow :

We fix our attention on the parallelepiped representing all space points whose coordinates
lie between the limits 15
97 [z, z+dz)|, [y, y+dyl, [z, z+dz], do=dxdydz
We now construct a second rectangular parallelepiped, which include all points whose
coordinates lie between the limits
98)p & E+de], [n, n+dnl, [¢ ¢+d(

We set its volume equal to
dednd = duw (20)

13({}) We refer the Lecture Note by S.Ukai: Boltzmann equations: New evolution of theory, Lecture Note of the Winter
School in Kyushu of Non-linear Partial Differential Equations, Kyushu University, 6-7, November, 2009.
14({L) In the Boltzmann’ original equations, they are used with two terms like (114) g, (115)5. We can refer the General

lecture in the autumn meeting of MSJ by S.Ukai (44)] : The study of Boltzmann equations: past and future, MSJ, 23,
September, 2010.

15(4) ( - )p in the top of the equation or expression means the number cited in Boltzmann[2] in below of our paper.
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TABLE 5. The symbols and definitions
no symbol [defined]content of conformation in modeling of collision. cf. The Fig. 6 in the last page. [t m]ma
1 X, Y Z (21) |The component of accelarating force of a molecule in a coddinate direction.
2| mX,mY,mZ The component of the external force acting on any m-molecule. m
3 & ¢ (98) B [The component of velocity of any m-molecule in a coddinate direction. m
4 f 99 f=fl@, gy, 2. & ¢ ) m
5 f (99)B |1 = f(=z, v, 2, &, m, {1, t), different only with velocity of f. m|
6 F (100)p|[F=F(z, y, 2, & n G t) m
7 I3 (103)g |F1 = F(=, ¥, z, &, m, i, t), different only with velocity of F. m1
8 1, m, G (102) g [The component of velocity of any mi-molecule in a coddinate direction. m1
9 g p-116 |The moving direction ( or velocity } of an m-molecule to an m;-molecule. Fig. 6im
10 gdt p.116 |The moving distance of an m-molecule to an m1-molecule during dt. Fig. 6lm
The length of a line originated from m1-molecule, where, b is the smallest possible
distance of the two colliding molecules that could be attained if they moved
1 b (104)5 without interaction in straight lines with the velocities they had before the collision. Fig. 6| |ma
In other words, b is the line P, P, where P, and P are the two points at which
my and m would be found at the moment of their closest approach if there were
no interraction.
12 o The limit of the length of a line. [0, o]. Fig. 6] |m)
An angle formed between a line b and a line m1 H, where, € is the angle between
13 3 (104) g | the two planes through the direction of relative motion, one parallel to P, P along b, Fig. 6| [m1
and the other to the abscissa axis.
4 &, 1, ¢ (108) i |The component of velocity of a molecule after the collision. m
15 [ (109) g [The length of a line after the collision. Fig. 6] {m1
16 ¢ (109) g |An angle formed between a line b and a line m1 H after the collision . Fig. 6| [m1
17 do : 975 We set do = dzdydz in which the m-molecules lie, m
parallelepiped and we always call this parallelepiped the parallelepiped do.
satiiped_| (958 W e = i wich sty i of e -l e .
of velocity point i
19 don (1025) | We set dw) = dé1dmd(1 as well as dw, in which velocity point of the m;-molecules lie, s
(24) |and we always call this parallelepiped the parallelepiped dw;.
The m-molecules that are in do at time t and whose velocity points lie in dw
20 dn (99)5 |at the same time will again be called the specified molecules, or the “dn molecules.” m
dn=f(z, y, 2, & n ¢ t)dodw = fdodw
a1 dn! 99y’ The number of m-molecules that satisfy the conditions (97) g and (98) 5 at time ¢ + dt. ™
B ldn' = f(z, 4 2 & 1, ¢ t+ dt)dodw
The number of mi-molecules that satisfy the conditions (97) g and (98) 5 at time t.
2 N U008 |4y = F(z, g, z, & 7, ¢, t)dodw = Fdod ™
23 dNi (103)3 dN; = F(z, y, z, &1, m, Q1, t)dodw = Fidoduw) 'my
24 v (107) g [The number of all collisions of our dn molecules during dt with mi-molecules. mim;y
25 v (106) g |The number of m-points that pass an mj-point at any distance less than o during dt. mim;
26 v (105) g [The number of collisions between m-molecules and mj-molecules. mimy
The increase which dn experiences as a result of motion of the molecules during
27, \%] (22) |time dt, where all m-molecules whose velocity points lie in dw move in the z-direction |A2(p)lm|
with velocity £, in the y-direction with velocity 7, and in the z-direction with velocity ¢.|
As a result of the action of external forces, the velocity components of 2ll the molecules
B V2 (23) change with time, and hence the ve]tfcity points of théy molefules in do will move. As(e)jm
. The total increase experienced by dn as a result of collisions of m-~molecules
» ' (11)p with m-molecules. P Y Rk
The net increase experienced by dn as a result of collisions of m-molecules
30 Vs (112)5 with mi-molecules. pV;; =41 - 31 : Aa(ip) mim:
21 vi 118)5 The increment experienced by dn as a result of collisions of m or m-molecules with As (@) mims
each other.
32] ¢ Yawdo® |[(L16)ale=0(z 3, 2, & B C ), 34, 40 % = ©fdodw, multipling the number fdodw by ¢ m
33| & 3440 ® [T 2=2(z, y, z & M, ¢ ), Dy, 4, P = PFdodw, multipling the number Fdodw by & m
&1 =®(z, v, 2, &1, M, G, b,
34| @1, 304,00 ®1 |(117) 5 T ddo @1 = @1 Fidoduw, n?ultipling the number Fydodw by &1 ™1
35 Ai{p) (121) g [The effect of explicit dependance of ¢ on t.
36 Az(p) (122) g |The effect of the motion of the molecules. Vi m)|
37 As(p) (123) g |[The effect of external forces. Va m)|
38 Aa(p) (124) g [The effect of collisions of m-molecules with mj-molecules. Vi |m|mi
39 As(p) (125) g |The effect of collisions of m-molecules with each other. Vi m)|
40! Bi1(p) (127) g |The total effect in w of explicit dependance of ¢ on t.
41 B () (128) 5 [The effect in w of the motion of the molecules. Vi m
42| Bs(p) (129) g |The effect in w of external forces. Va  |m
43 By(p) (134) g [The effect in w of collisions of m-molecules with m1-molecules. Va mimy
44, Bs{p) (139) g [The effect in w of collisions of m-molecules with each other. Vi |Im
4] {Cn(0))} (125) g [ The effect in w and o as the same as {An(p)} or {Bn()}3
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and we call it the parallelepiped dw. The molecules that are in do at the time ¢ and whose
velocity points lie in dw at the same time will again be called the specified molecules, or
the “dn molecules.” Their number is clearly proportional to the product do-dw. Then all
volume elements immediately adjacent to do find themselves subject to similar conditions,
so that in a parallelepiped twice as large there will be twice as many molecules. We can
therefore set this number equal to

(998 dn=f(z, y, 2z, & n, ¢, t)dodw = fdodw
Similarly the number of m;-molecules that satisfy the conditions (97)p and (98)p at
time ¢ will be :
(100)p dN =F(z, y, z, & n, ¢, t)dodw = Fdodw

The two functions f and F completely characterize the state of motion, the mixing
ratio, and the velocity distribution at all places in the gas mixture. =~ We shall allow a
very short time dt to elapse, and during this time we keep the size and position of do
and dw completely unchanged. The number of m-molecules that satisfy the conditions
(97)p and (98)p at time t + dt is, according to Equation (99) g,

dn' = f(z, y, z, & n, (, t+dt)dodw = fdodw

and the total increase experienced by dn during time dt is

]

(101)g dn’ —dn= Edo dw dt.

£, 71, ¢ are the rectangular coédinates of the velocity point. Although this is only an imaginary point,
still it moves like the molecule itself in space. Since X, Y, Z are the components of the accelerating
force,® we have:

] dn d¢
dt Toodt Todt
5.2. Four different causes bringing up increase of dn.

Boltzmann explains an increase of dn as a result of the following four different causes of Vi, V2, V3
and V; :

z (21)

V1 : increment by transport through do

V2 : increment by transport of external force

V3 : increment as a result of collisions of m-molecules with m;-molecules
V4 : increment by collision of molecules with each other

We extract an outline by the Boltzmann [1] as follows :

The number dn experiences an increase as a result of four different causes.

(1) ( V1 : increase going out through do ; ) All m-molecules whose velocity points lie in
dw move in the z-direction with velocity &, in the y-direction with velocity 7, and
in the z-direction with velocity ¢.

Hence through the left of the side of the parallelepiped do facing the negative
abscissa direction there will enter during time dt as many molecules satisfying the
condition (98) as may be found, at the beginning of dt, in a parallelepiped of base
dydz and height £dt,!7 viz.

& flz, y, 2, &, 0, ¢, t)dydzdwdt

molecules. Likewise, for the number of m—molecules that satisfying (985) and go
out through the opposite face of do during time dt, the value:

§'f($+d$, Y, z, 6) m Cv t)dded"Jdt

16({L) Da X, Y, Z die Componenten der beschleunigenden Kraft sind, so ist: --. Boltzmann [2, p.103].

17(1}) ¢ : the z-direction with velocity multiplied by dt becomes the length of a edge of which consists a parallelepiped
with a base dydz.
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By similar arguments for the four other sides of the parallelepiped, one finds that
during time dt,
8f  of  .of
(655 + 75, * <5
more molecules satisfying (98 ) enter do than leave it. This is therefore the increase
V1 which dn experiences as a result of motion of the molecules during time dt.

)do~dw dt

17

af 8f of
Vi = —(5;9; +n5y—+ca)dodw dt

@)

( V4 : increase by external force ; ) As a result of the action of external forces, the
velocity components of all the molecules change with time, and hence the velocity
points of the molecules in do will move. Some velocity points will leave dw, others
will come in, and since we always include in the number dn only those molecules
whose velocity points lie in dw, dn likewise be changed for this reason.

(22)

V= (x% v 52

x% v L 29 a0 dw at
€t az)"

3)

Boltzmann defines the effects of collisions as follows :

( V3 : increase as a result of collisions of m-molecules with mi-molecules ; ) Those
of our dn molecules that undergo a collision during the time dt will clearly have in
general different velocity components after the collision.

o (Decrease : ) Their velocity points will therefore be expected, as it were, from
the parallelepiped by the collision, and thrown into a completely different
parallelepiped. The number dn will thereby be decreased.

o ( Increase : ) On the other hand, the velocity points of m-molecules in
other parallelepipeds will be throne into dw by collisions, and dn will thereby
increase.

o ( Total increase by collision between m-molecules and mi-molecules : ) It is
now a question of finding this total increase V3 experienced by dn during time
dt as a result of the collisions taking place between any m-molecules and any
my-molecules.

For this purpose we shall fix our attention on a very small fraction of the total
number vy of collisions undergone by our dn molecules during time dt with m;-
molecules. We construct a third parallelepiped which includes all points whose
coordinates lie between the limits '

(102)p  [&1, & +d&a], Im, m+dm], G, G +dé)
Its volume is
dwy = déydmd(

It constitutes the parallelepiped dw;. By analogy with Equation (100) 5, the number
of m;-molecules in do whose velocity points lie in dw, at time ¢ is :

(103)s  dN; = Fydodwy,

where F} is an abbreviation for F(z, vy, z, &, m, (1)

Boltzmann difines a passage of an m-point by an m-point as follows :

(a) ( How to pass : ) We define a passage of an m-point by an m;-point as that
instant of time when distance between the points has its smallest value ; thus
m would pass through the plane through m, perpendicular to the direction
g, if no interaction took place between the two molecules.
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(b) { v2 : the number of passages of an m-point by an m;-point : ) Hence, v
is equal to the number of passages of an m-point by an mi-point that occurs
during time dt, such that the smallest distance between the two molecules is
less than o.

{(c) ( A plane E : ) In order to find this number, we draw through each m;-point
a plane E moving with m,, perpendicular to the direction of g, and a line G,
which parallel to this direction.

(d) ( When a passage ends : ) As soon as an m-point crosses E, a passage take
place between it and the 7;-point.

(e) ( Aline m;X : ) We draw through each m;-point a line m1X parallel to the
positive abscissa direction and similarly directed.

(f) ( Half-plane : ) The half-plane bounded by G, which contains the latter line,
cuts E in the line mi H, which of course again contains each m;-point.

{g) ( band ¢: ) Furthermore, we draw from each m;-point in each of the plane
E a line of length b, which forms an angle ¢ with the line m; H.

(h) ( Rectangles of surface area R formed by b and ¢ : ) Al points of the plane
E for which b and ¢ lie between the limits

(104)p [b, b+db], [e, €+ de]

form a rectangle of surface area R = bdbde.
In Figure 6 '® the intersections of all these lines with a sphere circumscribed about
my are shown. The large circle (shown as an ellipse) lies in the plane E ; the circular
‘arc GX H lies in the half-plane defined above. In each of planes E, an equal and
- identically situated rectangle will be found. We consider for the moment only those
passages of an m-point by an m;-point in which the first point penetrates one of
the rectangles R.

Il = Rgdt = pdbdegdt, » TI=dN,T= Fidodw, gbdbdedt
R dN; (103)p m

Since these volumes are infinitesimal, and lie infinitely close to the point with
coordinates z, y, z, then by analogy with Equation (99)p the number of m-points
(i.e., m-molecules whose velocity points lie in dw) that are initially in the volumes
> Ilis equal to :

(105)p vs = fdeH = fF dodwdw, gbdbdedt

This is at the same time the number of m-points that pass an m;-point during
time dt at a distance between b and b+ db, in such a way that the angle € lie between
¢ and ¢ + de.

By v2 we mean the number of m-points that pass an mj-point at any distance
less than o during df. We find vy by integrating the differential expression v3 over
e from 0 to 27, and over b from 0 to o.

2m

o 2 o
(106)3 Vg = / db/ V3d6 = dl)du)dwldt/ dab de g- b- f . Fl'
0 0 0 0

The number denoted by v of all collisions of our dn molecules during dt with
mi-molecules is therefore found by integrating over the three variable ¢, 71, (1
whose differentials occur in dw;, from —co to 4+00; we indicate this a single integral
sign :

o0 00 -4 2m
(108 =/ vodwi = do - dw-dt/ dw1/ db fFigbde
-0 —0 0 0

‘We shall consider again those collisions between m-molecules and m-molecules,

whose number was denoted by v3 and is given by Equation (105)p.

18({}) ‘We show this Figure 6 in the last page of our paper citing [2, p.107], which is equal to {1, p.117), however, we must
correct the symbol R by H of {1, p.117].

— 170 —



THE MICROSCOPICALLY-DESCRIPTIVE FLUID EQUATIONS BY BOLTZMANN 19

These are the collisions that occur in unit time in the volume element do in such
a way the following conditions are satisfied :

o The velocity components of the m-molecules and the m;-molecules lie between
the limits (98)5 and (102) g, respectively, before the interaction begins.

e We denote by b the closest distance of approach that would be attained if the
molecules did not interact but retained the velocities they had before the collision.

The total increment i, experienced by dn as a result of collisions of m-molecules
with m;-molecules is founded by integrating over ¢ from 0 to 2, over b from 0 to o,
and over &, m, 1 from —o0 to +00. We shall write the result of this integration
in the form :

o 2w
(111)g i1 = dodwdt // f’F{gbdwldbde
0 0

Of course we cannot perform explicitly the integration with respect to b and ¢
since the variable ¢', 7', ¢’ and £}, 7}, {{ occurring in f’ and Fy are functions
of (¢, n, ¢, &, ni, ¢{1,b and ¢), which cannot be computed until the force law is
given.

The difference i; — v; expresses the net increase of dn during time dt as a result
of collisions of m-molecules with m-molecules. It is therefore the total increase V3
experienced by dn as a result of these collisions, and one has

o 2
(112)3 V3 = il -V = dod.wdt // (f’F{ - fFl)d.wldbde
0 JO

(4) ( Vi : increment by collision of molecules with each other ; ) The increment Vj
experienced by dn as a result of collisions of m-molecules with each other is found
from Equation (112)g by a simple permutation. One now uses £, 71, (1 and
&, 15, {1 for the velocity components of the other m-molecule before and after the
collision, respectively, and one writes f; and f} for

fl:f(z: ¥ 2 &, m, Clv t) and f{‘:f(z1 Y, 2 fi) 7’;) C{’ t)
Then :

o0 27
(113)5 Vi = dodwdt // 8- £11)abdndie
1]

5.3. Formulation of Boltzmann’s transport equations.
According to Boltzmann[2, pp.110-115], 2° his equations (so-called transport equations) are the following
.21

Since now Vi + V3 + V3 + Vj is equal to the increment dn' — dn of dn during time
dt, and this according to Equation (101)g must be equal to %{dodmdt, one obtains
on substituting all the appropriate value and deviding by dodwdt the following partial
differential equation for the function f :

19(l,L) Hier kann die Integration nach b und € natiirlich nicht mehr sofort aus gefiihrt werden, da die in f/ and F|
vorkommen den Variabeln &', #', ¢’ und &, n}, ¢ Function von &, %, {, £, 7|, ¢].b und esind, welche nur berechnet
werden kdnnen, wenn Virkungsgesetz der wihrend eines Zusammenstosses wirksamen Krifte gegeben ist. [2, p.112].

2O(l,L) Boltzmann(1844-1906) had put the date in the foreword to part I as September in 1895, part II as August in 1898.

21({)} We mean the equation number in the left-hand side with (-) 5 the citations from the Boltzmann[2] or [1]. We state
only the symbol [ instead of {7 . cf. (107)5.
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of  ,8f of of ,98f .08f ,0f
{114)8 5+€5$-+n%+ca—zl+xa+ya—y+zbz

g

9 >
//0"" /oh(f'Fx' — fF1)gb dw; db de+//0m/0h(f’fl' — £f1)gb dw, db de
Vs \7

3

4

A / [(F'F = fF) + (£ £l = £12)] b don db de

Va+Vy

Similarly we obtain the equation of F :

OF; AP, F F. 8F, 8F 8F,
(115)8 7‘+£la—$‘ +n19—l+claa—z‘ +X Y+ 2

By Oz Ay Oz
RA A

L) 27 L) 27
= // / (f'Fi — fF1)gb dun db dc+// / (F'F} — FFi)gb duwy db de

o Jo o Jo

‘Zs Va

o0 27
- /f / [('F = £F) + (F'FL - FF)]gb dun db de

o Jo

Va+Vy

where,
f=f(za Y z, Ey 7, Cy t)v fl =f(l', Y, z, 511 m, Cly t)y f{:f(zl Y, z, 517 77{1 Ciy t))
FZF(IE, v, 2 Ev 2 C! t)a R ZF(zy Y, 2, &1, m, Cl) t)’ F{ :F(I, Y, z Eiy 7]1» Ci! t)
Namely, we can verify (114) g for f :

(25)

TABLE 6. Combination of function before and after collision

no| itemn Vs before] Vi after [/ of Vy before[f of V, after|F of Vy before|F of V, after
1 [function of my f f f f F F’
2 | function of m| F F] f1 fi F F]
3] increment [FF = A | ffi-fh [F'F{ - FF

itVe+VotVe _ 0f (. 0f  Of Ofy_(y08f Of ,Of
dodisdt = & (Eaz+”ay+<az) (ngJ“YayJ’Zaz)

v

//0°° /Ozﬂ(f’Fll - fFl)gb-dwldbdel+\//0w /02"(flf{ - ffl)gb'dwlﬁ
v v.

3 4

+

Similarly we obtain (115)g for F.
‘/1+V2+‘/3+V4 _ <9F1 _ ( 8F1 8F1 3F1) _ ( 8F1 3F1 3F1)

R = A U R

00 27 00 27
+ // (f'F{ — fF1)gb - dundbde + // (F'F{ — FFy)gb - dwidbde.
0 0 0 0

({}) Here, we can confirm the identity with the today’s description of the Boltzmann equations (15) and
(16) :

dodwdt Tat

3f.f+V‘fo+w'va=Q(f7g)v 3tF+VVXF+wv"F=Q(F’G)’
SN S N’ N N N’
Vi Va V3, V4 Vi Va V3, Va

QU o)tz) = [ [ B 0,0} o) f0) - g0) f0)}dodvn, ) = olt,2,00), et
t>07 x)v1w€Rn(n23)7 x=(z7ylz)7 v:(51n1<)5 wz(Xl Y] Z)'
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In the case of (18) and (19)

Bif+v -Vef+V, (Ff) =
N N et

Vi Vs

Q)
——

Vs,V

o= [, [ Bl - v S0 - fe) () dodr.

5.4. Time-derivatives of sums over all molecules in a region.

Let o be an arbitrary function of z, y, z, £, 1, ¢, t. The value obtained by substituting
therein the actual coddinates and velocity components of a particular molecule at time
t will be called the value of ¢ corresponding to that molecule at time ¢. The sum of all
values of ¢ corresponding to all the m-molecules that lie in the parallelepiped do and
whose velocity points lie in the parallelepiped dw at time ¢ is obtained by multiplying ¢
by the number fdodw of those molecules. We denote it by (116)p.

Similarly we choose for the second kind of gas any other arbitrary function & of
z, ¥, 2, & 1, ¢, t and denote by (117)5. The sum of the values of ® corresponding to
all the m-molecules lying in do whose velocity points lie in dw;. ¥, is the abbreviation

for ®(z, y, z, &, m, G, t).

1, §.17, pp.123-124].

5.5. General form of the hydrodynamic equations.

As the general expressions for fluid mechanics, he states that when we substitute for

21

Ql .
5t its value

from Equation (114)p, it turns into (120)p, (126)5, (140)p, a sum of five terms, each of which has its
own physical meaning, as follows:

L

(116)B 34, 40 = ¢ fdodw,

(1175 3 4y.00 ® = ®Fdodun,
(118)p Sy g0 =dof ofdw, (1265 &3, 400 = dof(f + o3 ) dw = [25
(119)8 ¥,,,0 = [[ofdodw, (140)5 5, 0= [f (1% +<pa,)d0dw St Ca(9)

(120)5 % Zdw,do

Zdw do {’1 = <I>1F1dodwl,

(f + 906, )dodw [Ei:

1 An()] dods,

Bu()]do,

5.5.1. Conformation of A,(yp).

(121)s
(122)p
(123)p
(124)p
(125)p
where {A,(¢)}5<

Ai(p)
A2(p)
As(p)
Ay(p)

In order to find % Zu_d » > we have simply to integrate 3’% 3

Al(‘p) = %‘tﬁf,
Aalp) = ~o (€5 +n + ¢3L),

As(p) = —p( X +YY +Zs§),
Aoy =0 I fo 9 (f’F{
A5(‘P) = ‘pfj;’o oﬂ(flfl,

1 correspond to the effects such as

: the explicit dependence of ¢ on ¢;
: the motion of the molecules;
: the external forces;

fF1)gb dwy db de,
— [ f1)gb dwi db de,

: collisions of m-molecules with m;-molecules;
As(p) :

collisions of m-molecules with each other;

w,do

5.5.2. Conformation of B, ().

o over all possible values of dw.

295 5 | Z Bo ()] do.

w,do
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One obtains each B by multiplying the corresponding A by dw = d€dnd( and integrating over all these
variables from —o0 to +00, which we indicate by a single integral sign. Thus :

1275 Bi(p) = f Av(p)dw = / % fa
(128)5 Bz(sa)=/Az(sa)dw=—/ (X 152 f+c oY

(1290 Bale) = [ Aalip)o = —/so(xaf sy z)a

130z Bae) = [ sl = [ /0 - /0 " (o~ ) FL — FF)gb doo daos db de
(395 Banle) = [ Aste' — v = [[[ ” / " (¢! = o) frgb du dun db de

2
(136)5 /// / (¢ — &) f19b dw dwy db de
21r
(135")s  Bgy(p /A5 —p1)dw = /// / — 1) f f'gb dw dw; db de

) 2n
(136)5  Bla(p) = / As(1 — ) = / / /0 /0 (1 — @4)f" Flgb dw dwy db de
From (135)5,

2n
(137)g  Bsa(p) = ;(Bs1+351 /// / (¢ +¢)—p— cpl)ffgbdwmul db de
From (136) 3,

27
(138)5  Bsa(w) = 5(Bsa + Bly) = /// / (p+ 01— @ = G f Flgb dw dun db de
(13

The arithmetic mean of (137) g and (138) g,

2m
(195 Bae) = 3B+ Bo) = 5 [[[7 [T totion =~ S = 100 o i ab

5.5.3. Conformation of C,(y).

5
(140) dtZw D Culyp)

n=1

Ci(p) + Calp) + Ca(y) + Ca(p) + Cs(p)
) )

increments except for those resulting from collisions  increments of those resulting from collisions

Remark: since in 3, ;¢ of (140)5 one has to integrate over all values of do and dw, this quantity is
now a function only of time. Hence the use of symbol % is unnecessary, and we can express differentiation
by the usual Latin letter d. Each C is obtained by multiplying the corresponding B by do and integrating
over all volume elements, or else by multiplying the coresponding A by dodw and integrating over all do
and dw as we show in (119)

Integrating {B.,()}3_; of (127)p, (128)5, (129)5 by do from —oo to +oo,

(141)5  Ci(¢) + Calp) + Calp /fddwa“’ 8f+ af caf ?+Y3§ aﬁ)

Integrating B, (p) of (134) g by do from —oo to +oo,

(1421)5 Calp) = % ////0oo /Ozﬂ(cp — ¢)f'F] - fF1)gb do dw dw; db de
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Integrating Bs () of (139) s by do from —oo to +o00,

oo 2%
(1e20)s Cs(o) =7 [ff /0 /0 (0401~ @ — GO fl — ff1)gb do dw duwy db de

5.5.4. More general proof of the entropy theorem. Treatment of the equations corresponding
to the stationary state. Boltzmann assert the following conditions

(14N fH=ffi, FR=FF, fFR=/[fH.
5.5.5. Linearity of Ay, Bg, Ck.

Since A, B, C are only the increments of definite quantities resulting from specified
ca.uses, most authors express them as derivatives of those quantities. Maxwell writes
5 Z‘., do P> Kirchhoff 2 Bt 2w, do P for Bs(p) etc. As with all differentials, the A for a
sum of two functions is equal to the A’s for the addends :

Ax(p + ) = Ax(p) + Ar(¥),

Bi(p + ¥) = Bi(p) + Be(¥),

Ci(p +¥) = Cr(p) + Ce(¥)
for any subscript k. These equations follows from the circumstance that ¢ occurs in all
the integrals A, B, C only linearly.

5.6. Special form of the incompressible, hydrodynamic equations.

=0

d 6 8(pCono
(173)p p(%—+ %’+vay+waz)=/’y _(256011) (PZ _ g%;no),
p(% +uge + 02 +wle) = pz - B0 _ emG) _ )

Boltzmann says “these equations as well as Equation (171) g, are only special cases of the general equation
(126)p and were derived from it by Maxwell and ( following him ) by Kirchhoff.” Boltzmann concludes
that if one collects all these terms, then Equation (126) reduces in this special case to:

s 2 ) 0 DTy 5] ) )

collision terms

Boltzmann states about (177) 5 :

From this equation Maxwell calculated the viscosity, diffusion, and heat conduction
and Kirchhoff therefore calls it the basic equation of the theory. If one sets ¢ = 1, he
obtains at once the continuity equation (171); for it follows from Equations (134) and
(137) that Bs(1)} = Bs(1) = 0. Subtraction of the continuity equation, multiplied by ¢,
from (177) gives (using the substitution [158]):  [1, p.152].

where, (158) : E =& +u, n=n+v, (= +w.

% , % 9% 0 d(pkop) , d(pm?P) , A(pGop) _ 3 . 90
(178)s ”(at+”a +oge+ wzt) + o+ g+ [X6£+Y +Za(]

= m[Bule) + Bs(v)]
——

collision terms

If one denotes the six quantities (179) 5 : pE;, pTTO, p—(;, oo, p€oo, plomo by Xz, Yy, Z,, Yo =2, Z,
X,, X, =Y, namely, when we use the symmetric tensor, then we get the followlng

& péono péo(o [ X: Xy x,} P T T

=| T P Th|, (26)
. T P

pbomo ez el |=| Y= Yy Y:
pEala plome PG Zs 2y Z:
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du du du du X, 4 89Xy | ax, _
p at+“a:+“ay+waz)+ ot By T o = pX,
dy v 4 . 9v dv Yy L Iy L oY, _
(180)s < p az+“a:+”ay+waz) e + 3 T G- =Y,
dw 4 . 8w |, dw dw\) y 82z 4 8%y | 82, __ .5
Pl T oz t V5 +w3:)+ 2 T oy T o =2

These are not NS equations for lack of the pressure term. Moreover (181)p : p = pt3 = png =
063, Zamo = &0lo = noo = 0. Here, he assumes that from the supposition of isotropy and homogeneity,
p= %(XI + Y, + Z.), which is the same as the principle by Saint-Venant or Stokes.

He deduces a special case of the hydrodynamic equations as follows:

For the present, we assume as a fact of experience that in gases the normal pressure
is always nearly equal in all directions, and that tangential elastic forces are very small,

so that Equations (181) are approximately true. Substitution of the values given by this
equation into Equation (173) yields:

9,
(3 +ud+oft+ul)+ L -px =0,
(183)p $p(g+ufe+vg+w)+Z —py =0,

3
p %—‘f+ug—':+v%f+w%—‘:)+5§—pZ=0

which are the so-called Euler equations in incompressible condition of (171)p.

8(pE2) | Apfame) , B8(pEoln)

Py + i) 4 Hefom) 1 Bsste) _ px
z - oz _

(185)p  { pgy + efom) 4 2m) 4 Aeme) _ py =,
T o 2

p%—';’ + 5§g§z(o) + 6§5@:ﬂ0) + a(gin) —pZ =0

We set the values of (26) as follows, which is the same tensor as Stokes :

—_— du _ 1(9u 4 8v | Bw il u dw  Ou
G om g | ro(EdEe g w) R(Eeg) -m(Eg)
@205 | sl e oG |=| -R(Z+%) p-m{E-3(L+3+3)} -R(E+%)
2 olomm o2
Polo oo PG5 R(Z+%) -R(2+%) p-m{E-3(2+2+3))

From (220) g, we calculate the components of (185)p as follows:
8eEd)  BlpEomg)  A(eEalg)
dx Oy _ 8z
(plong) 9(em3)  (pmody)
oz oy Bz
a(pfola) Olplom) OeGR)
oz By oz

p-n{z%—g(%+g—;+a—f)} -R(Z+3) -R g4 22)

ax T By 8z z %

— 9 8 & 2(@d 9 3 12k 8

= | -R(2+2 p—R{2%—§(a—:+a—:+—a%) ~R(Z+ 5 2z
R(3+2) -R(2+2) r-r{ep-3(2+a+3)} |t =

Then, substitution of these values into the equations of motion (185) g yields:

PR+ R -R[Au+ 3L (2 +2+32)]-px =0,

(221)5 p%+g§—nm+§5§(g—;+g§+g—~;) —pY =0,
Ped a 18 (8 a el —
PG+ B -Rldur (B4 g+ 3| -z =0

We can interpret that as the special cases, Boltzmann have deduced the NS equations after substituting
the tensor (220)p to (173)p, for lack of pressure terms.
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We can construct the tensor with the Equations (13) and (14) as follows:

o€ o o a2 - -) -sr(R %) -we(ieR)

[pﬁn o’ pn§}= —s2r($+ %) p-adsr ?—;—2%—'3—';) —a%li'(%‘*% (27
P et (R 8) —ahr(B %) powe(d -8 -2%)

From R = ﬁ;p, we get (220)5. The equations (11) equals (185) 5 and (12) equals (221) 5 except for

the coefficient.

5.7. Entropy.

The word entropy was deduced by Clausius [7] in 1865, and following his nomenclature, Boltzmann
constructed his first version of equations in 1872, applying entropy to his gas theory. We show citing [7)
Clausius’ Greek nomenclature, meaning “conversion” of material as follows :

(60)0 S=So+/‘—1,1—?-, (65)¢ /47$=S—So,

welch, nur etwas anders geordnet, dieselb ist, wie die unter (60) angefiihrt zur Bestimung
von S dienendene Gleichung,.

Sucht men fiir S einen bezeichnenden Namen, so konnte man, dhnlich wie von der
Grosse U gesagt ist, sie sey der Warme - und Wirkinhalt des Korpers. Das ich es aber
fiir besser halt, die Namen derartiger fiir dir Wissenschaft wichtiger Grossen aus den
alten Sprachen zu entnehmen, damit sie unveréndert in allen neuen Sprechen angewandt
werden konnen, so schlage ich vor, die Grosse S nach dem griechischen Worte % 7pom1},
die Verwandlung, die Entropie des Korpers zu nennen.

Das Wort Entropie habe ich absichtlich dem Wort Entropie durch diese Worte banannte
werden sollen, sind ihren physikalischen Bedeutung nach einander so nahe verwandt, dass
eine gewisse Gleichartigkeit in der Benennung mir zweckméssig zu seyn scheint. [7, 389-
390}

(Transl.) (60)c, (65)¢c, which seemed to be like only reallocated expression, however,
the usage cited in (60)¢, is useful equation.
We sought some suitable name for the nomenclature for S, like the quantity U, such
as the value of warm and value of work of a material. I considered that it seemed to be
suitable to be adopted from the old Greek as the nomenclature for the important quantity,
so I owed it to the quantity S from Greek word #% 7pon7), which means “conversion”, the
Entropy of the material. - --
Boltzmann consider when the following conditions do not hold, where, the number of the two molecules
fand f, F and Fy and f and F; before and after collision, namely from (147) 3z,

fh# ff, FR#FF, fR#fF
We construct the expression H for the gas contained in the volume element do. The value thus
found will be multiplied by ~RM and divided by do. Let this quantity be
J= —RM/flnfdw,

Jdo is then the "entropy” of the gas contained in do, if it had the same energy ( heat ) content and the
same progressive motion in space, and obeyed the Maxwell velocity distribution law. It can be calculated
just as in §19, and has the value

T3
Rp In(-—)
7 [
here, this value %E is called Boltzmann constant and it was inscribed on his epitaph as
S=khw

which is also
3

Tz
—)"=exp8
(p)
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6. Conclusions. Contributions to the NS equations

Basically, the N'S equations were deduced from Newton’s kinetic equation ( the second law of motion
) : F = mr, %2 however Boltzmann’s gas equations were not deduced from it, but he extended the ideas
of gas theory including the problem of gas collision by its progenitors Maxwell and Kirchhoff. In fact,
Boltzmann had confessed his fear the authority in the preface of the Part IT of his book ( cf. Appendix ).

‘When we consider the contributions by Boltzmann to the NS equations, Boltzmann shows the Euler
equations and the N S equation as the special case of his general hydrodynamic equations. He verified the
validity of the Euler equations and the NS equations, which were recognized in 1934 at latest by Prandtl
139, p.259), and at the epoch about one hundred years after Navier’s paper [32], read by the referees in
1822 and published in Mémoires de L’Academie des Sience de I’Institute de France in 1827.

Maxwell in 1865, Boltzmann in 1895 and Prandtl[38, 39] in 1904 both used the “well-known hydro-
dynamic equations” and at latest in 1929, used the nomenclature of “Navier-Stokes equations”, using
the two-constant not of Navier, but of Saint-Venant, Stokes, and expanded by Maxwell, Kirchhoff and
Boltzmann. These three persons verified the hydrodynamic equations without the name as Navier-Stokes
equations.

In short, we can state that after formulating by Navier (1827) [32], Cauchy (1828) [5], Poisson (1831)
[35], Saint-Venant (1843) [41] and Stokes (1849) [42], the topics of hydrodynamic history are rebuilt by
Maxwell (1865) {29}, Boltzmann (1895) [1] and Prandtl (1927) [39] in the cyclic interval of about 30 years
or s0.

As the two constants, Saint-Venant had used ¢ and §, and Stokes 4 and 4, while Boltzmann used R
and % after tracing Maxwell. According to Prandtl[38], we can suppose that the naming may be decided
in “The third international mathematical Congress” in Heidelberg in 1904 or few years later than it.
Boltzmann states hydrodynamic equations as well as the Euler equations of (183) g:

Die Gleichungen 221 sind die bekannten auf innere Reibung corrigirten hydrodynamis-
chen Gleichungen. (2, p.169]
(transl.) Equations (221) are the well-known hydrodynamic equations corrected for
internal viscosity. [1, p.176]
According to Boltzmann'’s description, we can suppose the fact that the then academic society had not
fixed yet the name of this equations, up to 1835 or 1898.

7. Epilogue. Humanity of Boltzmann

In 1898, Boltzmann had published Vorlesungen iiber Gastheorie, II Teil. ( The lecture of gas theory,
Part IT ), in which preface, he had expressed his fear that the theory of gases were temporarily thrown
into oblibion as follows :

Es wire daher meines Erachtens ein Schaden fiir die Wissenschaft, wenn die Gastheorie
durch die augenblicklich herrschende ihr feindselige Stimmung zeitweilig in Vergessen-
heit geriethe, wie z.B. einst die Undulationstheorie durch die Autoritat Newton’s. |2,
Vorwort]|
In my opinion it would be a great tragedy for science if the theory of gases were
temporarily thrown into oblibion because of a momentary hostile attitude toward it, as
was for example the wave theory because of Newton’s authority.  Forward to Part II
(1, p.215]
After eight years, a newspaper in Wien *Neue Freie Presse’, ( New Free Press, Wien, Freitag, 07/Sep-
tember in 1906, Nr. 15102 ) reports Mach’s consternation confronted by the news of Boltzmann who
had taken. his life. Here we cite our transcription from the Fraktur printing style of the newspaper in

22(l).) By d’Alembert’s principle in 1758, from the Newton’s kinetic equation ( the second law of motion ) : F = mr,

d’Alembert proposed F — mr = 0, where, F : the force, m : the gravity, r : the acceleration. According to his assertion,
the problem of kinetic dynamics turns into that of the static dynamics.
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1906, which is in Broda [3] 2 and we show it in our last page of our paper, thanking Saburo Ichii and
Toshihiko Tsuneto and the publishing company Misuzu Shobo. From here, we can see Boltzmann was
having both the ardent passion to the learning and the pure humanity in his lifetime.

Remark. Mach had been the supervisor of Boltzmann and both were the then position of ‘Hofrat’,
namely the advisor to Court of the Empire of Austria-Hungary, ?* so that the news reads 'Hofrat Mach’
or 'Hofrat Boltzmann’.

Hofrat Professor Mach iiber den Tod Boltzmanns.

Hofrat. Mach, der durch den Tod Boltzmanns zehr schmerzlich beriihrt worden
ist, feilte und mit, daB das fraurige Ende der durch Selbstmord geridde jetzt nicht zu
befiirchten war, da sich sein geistiger Zustand in der lasten Zeit etwas gebessert hatte.
Seit etwas zwei Jahren war zu er allerdings Unfillen von Irrwahn ausgefahrt, in denen
sich bei ihm namentlich der Trieb zur Flucht fiihlbar machte. Er mufite deshalb sorgfaltig
iiber macht werden. Doch traten wieder Momente ein, in denen er beruhigender Zus-
prache zugénglich war. Dies war auch der Fall, als er zur Erholung nach Duino gebracht
wurde. Er versprach sich ruhig zu verhalten, und die Familie glaubte, dafl die Besserung
anhalten werde, so dal man nicht aus den Eintritt seiner verbiirgten Gerlichten zufolge
hat Boltzmann schon damals verfithrt, Hand an sich zu legen.

Gelegentlich der Unwesenheit von Professor Dftmalb in Wien habe ich Boltzmann zum
leztenmal in wirtlich froher Laune gesehen, in so guter Stimmung, wie selten vorher und
nie wieder seither. Wir wohnten damals zusammen den Borirdgen des Berliner Gastes
im Ingenieur- und Architektenverein bei und zum Abschied war die Sachwelt bei einem
Bankett vereinigt. Dftmalb safl auf den Ehrenplatz, Boltzmann zu seiner Rechten und ich
zur Linken. Die “Gliicksformel”, die Dftmalb entwickelt hatte, gab Boltzmann Anlal zu
einer geistspriithenden den Tischrede. Lange salen wir beisammen, und nach Mittelnacht
geleitete ich ihn heim. Boltzmann war von einer kindlichen Reinheit des Geistes, von
unerschépflicher Liebenswiirdigkeit und gliicklich, wenn er jemanden geféllig sein konnte.

Un Unerkennung als Gelehrter hat es ihm nie geschkt. Seine Bedeutung war je
iiberagend, daB man sich ihr nicht entziehen konnt. Es war ihm auch beschieden, aus
dem Kreise seiner Schiiler grofe Ménner hervorgehen zu sehen. Der Schwede Arrhenius,
der Berliner Bernst, beide Koryphden der Wissenschaft, waren Horer Boltzmanns, und
beide haben oft betont, wie unendlich viel sie ihrem Meister zu danken haben. Nach der
Pensionierung von Professor Mach hat Hofrat Boltzmann auch philosophische Vorfrige
gehalten, die sich auBlerordentlich guten Besuches zu erfreuen hatten.

Es ist ein Jammer, daf ein Mensch von der gewartigen Bedeutung Boltzmanns vor
der Zeit aus dem Leben geschieden ist. Er hat der Wissenscaft Immenses geleistet, aber
es war immer noch Prozef von ihm zu erhoffen.

Translated sketches of the news story :

Mach was surprised at the news of Boltzmann’s death. Mach had heard that Boltzmann was saying
himself his recent steady calm, so all the members of the family had supposed that Boltzmann was
recovering from being in the low spirits and had not been afraid of such an imminent state of mind.

We lived then together with the gests from Berlin of the association of tecknology and architecture
in Borirdgen. He avoided the drinking party or banquet for his standard of value.

23())) The original by Broda didn’t cite this newspaper, however, the translators into Japanese [3] cites a photo of the
then news stories in the Fraktur printing style. Here we cite our transcription from the Fraktur printing style into the
today’s German style for convenience' sake. '

#4(§) The Empire of Austria-Hungary : 1867-1918.
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Dftmalb took the seat of honor, to whom Boltzmann sat the right side and I the left side. Dftmalb
proposes “the formula of happiness”, Boltzmann gave the oppotunities for the speech. We were sitting
together with him. At midnight, we went back to home.

Boltzmann had a childish unalloyed genuine of mind and devoted endless kindness in perfect happyness
to anybody, whom, when he could be kind to.

His temperate obstinancy as a scholer didn’t allow him to play his cards well. His idea was so noble
that one should have not been easy to get along with him. Boltzmann kept away from the troubles with
the scholars.

Arrhenius of Swedish and Bernst of the Berliner were the authorities in each academic arena and
colaborators of studies with Boltzmann and also the good listeners of Boltzmann'’s talks, and both have
emphasized that how very frequently they had thanked their savant, Boltzmann. Boltzmann gave also
the lectures on philosophy.

The interviewee, Mach concludes his talk in the last paragraph with the following evaluation to
Boltzmann : “It is greatly to be regretted that a promissing person upon his future, considering the
importance of Boltzmann, passed away his life. He had achieved the great tasks, however, it was still
under the process of extending it eternally.”
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