CONSTRUCTIONS AND DEVELOPMENTS OF THE SOLUTION ON
THE NAVIER-STOKES EQUATIONS AROUND ABOUT SOBOLEV’S
EMBEDDING THEOREM

S 7% (H AR, D2)

ABSTRACT. We introduce the formulation and the successions of the constructions of
the solutions on the Navier-Stokes equations earlier on in the history until 1950s, sum-
marizing with the following 4 types of these successions :

1) for the classical solutions, to formulate or rediscover or re-derive the Navier-Stokes
equations by Newton,Bernoulli,D’Alembert,Euler,
Lagrange,Laplace,Navier,Cauchy,Poisson,Saint-Venant Stokes,

2) for the fundamental solutions, owing to Newton’s potential theory, to construct the
invariant tensor t;; by
Poisson,Cauchy,Green,Stokes,Oseen, Lichtenstein,Odqvist,Leray,Ladyzhenskaya,

3) for the Cauchy problem/turbulent solution/weak solutions to define and construct
the conception/notion of the solution by Cauchy,Kovalevskaya,Hadamar, Leray,Hopf,
and

4) for the generalized solutions/strong solutions, in using the functional analysis,
especially, directly the Sobolev’s tools, to construct the proof and regurality by
Sobolev,Kiselev,Ladyzhenskaya,Prodi,J.L.Lions,Serrin.

1. EARLIER-ON SUCCESSIONS OF THE CONSTRUCTIONS OF THE SOLUTIONS ON
NAVIER-STOKES EQUATIONS

For convenience’ sake, we summarize the successions of the constructions of the solutions
on Navier-Stokes equations, earlier on in the history until 1850s, with the following 4 types
of the successions :

1) for the classical solutions, to construct the formulation or rediscovery or re-derivation®
of Navier-Stokes equations,

+2) for the fundamental solutions, owing to Newton’s potential theory, to construct
the invariant tensor i,

3) for the Cauchy problem/turbulent solution/weak solutions/ to construct the con-
ception/notion of the solution.

4) for the generalized solutions?/strong solutions®, in using the functional analysis,
especially, directly the Sobolev’s tools, to construct the proof and regurality.

We show four earlier-on successions of the constructions of the solutions of the Navier-

Stokes equations in Table 1 and 2, and the successions of the invariant tensor : ¢;; in

Table 4,5 and 6.*

Date: 2007/01/30.

We owe to O.Darrigol [15] in view of the rediscovery or the re-derivation of Navier-Stokes equations.

2cf, We cite below the definition of the generalized solution with Kiselev & Ladyzhenskaya[34]'s
formulations in §5.

3There is the theorem on the strong sclution by the modern definition in the following :
Theorem { Kato, Giga ): a € L?NLY, n < ¢ < 0o =7 T > 6, 11w astrong solution of the Navier-Stokes
equations on (0,T) in the class : u € C((0,T); L2 n L) N C((0,T);, W24y n C1((0,T); LL)). The word :
“strong” means p =2 > 1 in W99,

4 Odqvist[57], he uses ”"Der in der Flissigkeit wirkend Spannungstensor”, which means the stress
tensor operating in the fluid.
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TABLE 1. No.1-1 Four earlier-on successions of the constructions of the
solution of the Navier-Stokes equations

nol|l.formulation of equations 2.construction of tensor and integral equ.
classical solution fundamental solution
formulation & rediscovery invariant tensor : ¢;;
potential theory potential theory
1 |L.Newton[55](1643),[56](1687) A.Cauchy[6](1828)
2 {D.Bernoulli|2](1727),[3](’38) S.D.Poisson[60]{1829-31)
3 [J.L.d’Alembert[13](1752) G.G.Stokes[65(1845)
4 |[L.Euler{18](1752-55),[19](55),[20](60-61)|C.W.Oseen{59](1927)
5 |J.L.Lagrange[39, 40](1788) L.Lichtenstein[45](1928),(46](°29),{47](’31)
6 |M Laplace|41](1798-1805) F K.G.Odqvist[57](1930)[58]('32)
7 |C.L.M.H Navier[51](1822),(52, 53[('27) |J.Leray[42](1933),43, 44)('34)
8 |A.Cauchy(1823) O.A Ladyzhenskayay|36](1959),[37](1970)
§ 1S.D.Poisson[60](1829-31) V. A .Solonnikov[64](1977)
10|Saint- Venant(1837)
11|G.G .Stokes[65](1845)

TABLE 2. No.1-2 Four earlier-on successions of the constructions of the
solution of the Navier-Stokes equations

nol|3.notion/conception of solution  |4.functional analysis

turbulent solution/weak solution |generalized solution/strong solution
Sobolev’s embedding theorem, etc

potential theory

1 [A.Cauchy(7, 8, 9, 10, 11, 12](1842)|S.L.Sobolev[63}(1950)

2 1S.Kovalevskaya[35/(1875) A. A Kiselev]32]{1955),[33]("56)

3 |G.Darboux[14](1875) A.A Kiselev& O.A Ladyzhenskaya|34]('57)

4 |J.Hadamard[24](1932) 0O.A.Ladyzhenskaya[36](1959)

5 |J.Leray[42](1933),43, 44](’34) G.Prodi[61](1959)

6 |E.Hopf]28](1951) J.L.Lions&G.Prodi[49](1959)

7 J.L.Lions{48](1959)

8 J.Serrin[62](1959)

9

10

11

2. THE SUCCESSIONS OF THE FORMULATION OF THE NAVIER-STOKES EQUATIONS

2.1. Euler’s formulation. In "Sectio secunda de principiis motus fluidorum” ( The
chapter 2 on the priciple of the motion of the fluid ) [18}, Euler shows the Euler’s equations
what we called today, in modern vectorial expression :

1 N
6_u+u.vu+—Vp_—_f, div u = 0. (1)
ot p

We show Euler’s text [18, pp.85-95] as follow :°

[Problem 20] §19 From the givin three velocities u, v and w from which
the individual elements of a fluid are moving, investigate the accelaration
in an arbitrary interval of the infinitely short time : dt.

[Solution| Considering (Fig.24), the elements of the fluid now transient
at the point Z, determinated by the coordinates: OX =z, XY =y, YZ =

5This English version of L.Euler[18] is translated from Latin by Shigeru Masuda.
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z, from which with the velocities u, v and w, the body arrive by the time
dt to the interval z. Hence, this point is, by the three coordinates

Oz =z +4udt, zy=1y+vdtand yz =2+ wdt

determinated. This position we mention is seeked by the three velocities,
of which now the element at z exists and that are v/, v, w', which surpass
its three velocities u, v, w, how these turn out at Z?7 in this time, from
this increments, the accelarations are estimated. Now, u, v and w are the
functions of the four variables x, y, z and ¢, the velocities we mention in
z, the body of the timespan dt, therefore are constructed, if the variables
z, y, z and t of these increments udt, vdt, wdt and dt are added : and
therefore it turns out

u = u+udt(d—“) +vdt | 4 ) +wdt(d“) +dt(d")
v =v +udt(§) + vdt _) +wdt(d") + dt(d")
w' = w+ udt(%) + vdt(dw) + wdt(dw) + dt(ﬂ).

which in the motion of the investigation of the incremental velocities with
the divided timespan get the accelaration, the three accelarations we men-
tion, in this manner, we will estimate it :

5 -(8) () (2 3)

G —u(i) (8) (8] (8

e = (g )+v( 2) +u() + (%)

[Problem 21] §23 If the initial three velocities u, v and w, which the
individual points in the space by which the fluid is moved, it is suitable
that each density ¢ in an arbitrary point given, then investigate the relation
which intervene between the velocities and densities.

[Solution| From the Problem 19, it turns out, if the fluid particles of
these velocities u, v, w from Z to z the time dt, we put each density at Z
= q, and that at z = ¢’, then it turns out

q¢—-q  (du dv dw
qdt (d:r) (dy) (dz)
Now, on the other hand, which density ¢ such function given by the four
variables z, y, z and t, expressed and now which particle at the point Z
verified density denoted from it collected density ¢’, if the body, time at the
interval Z transfered so the four variable x, y, z and ¢ these increments
udt, vdt, wdt and dt are yielded true. Hence these densities ¢’ of each particle
from Z to z the translation is suitable thus to be expressed :

o =+t () o (5) + it () + e (37).

and it turns out
Tt =u(@) () (@) + ()
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TABLE 3. Point and pressure
point|pressure point pressure ]
Z D z
L |p+dz(2) l +dz(§ + dz(2)

M p+dy(E) m  |p+dy(2 )+dz(§§)
— T NI e
N |p+dz(£)+dy(R)n |p+ dz(E) +dy(L) + dz($)

which is able to valuate, if the above equation is substituted by the gained
equation between the velocity and the density, from this equation it turns
out as follows :

o) +ol5) +o(E) +o(@) +(g) +o(F) + (F) =0

here, because q( ) + u(i‘ﬂ) = (%’}), it turns out in short :

dq d-qu d-qu d-quw
(dt)+( dz )+( dy )+( dz )—0’
which is obvious that the derivative of the gu is only with respect to z, that
of the gv is only with respect to y and that of the qw is only with respect
to z and then, the variable must be obeyed.

[Problem 22] §28 If the fluid moving by an arbitrary force from the-
pressure in the individual points with gained known observed, investigate
the force of the accelaration.

[Solution] According to ( Fig.25 ), on the point by the orthogonal coordi-
nate, OX =z, XY =y, YZ = 2z, the element of the fluid, now arround Z
in the given figure of the parallel hexahedron, the rectangular Z LM Nzimn,
we put the differential coordinate ZL = dz, ZM = dy, Zz = dz continu-
ous, with respect to which, the volume is put = dzdydz, as ¢ is the density
at Z, of which the mass is = gdrdydz. Now at first, we consider the similar
forces of the gravitation in each direction at the watching point Z, by the
direction axes OA, OB, OC, explain clealy, this accelarated force along
the OA or when ZL = P, along the OB or when ZAM = ¢}, along the OZ
or when Zz = R, with which then the element of the accelarated fluid along
each direction indicated, for which, in fact, it is not necessary for certain
figure to attribute the element. In fact these figures, in paticular, are suit-
able to the forces of the accelaration, caused by the pressure. Therefore for
this time, the height of the pressure in Z, given by = p, such that the func-
tion with the four variables x, y, z and ¢, situated as known : from which
the natural pressure in the individual angles of the parallel hexahedron as
defined, it turns out : ( see Table.4 ) which pressure move in the individual
normal plane.

Secondly, we consider the opposite surfaces ZMzm and LNIn as well as
the pressure is given, of which surface LNIn sustains the above pressure in
each pressure element dz(j—i—) by the opposite surface ZM zm, which single
degeneration are gained in computation. Sustain this surface LNIn of the
height of the pressure dz(%) is given ; and this area of the surface = dydz,
the total pressure equals to the weight of the volume da:dydz(gf—), if it is
certain that the material is homogeneous of which density = 1, filled, which
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we assumed : and this direction of the force will parallels the axis AO, be-
cause it is normal on the surface. Because our hexahedron, of which mass
= gdzdydz, it is moved to the next direction along AO the force of the mo-
tion = da:dydz(j—i‘:—), these are exactly derived by the mass derived will give
the force of the accelaration = %(j—i‘;’—) ; similary we calculate to gain the force
of the accelaration, from which of our hexahedron of the next direction BO
becomes = %(%), and the next direction CO = %(g’;). After all, these forces
are contrary to them, which individual fluid are assumed, the elements of
the fluid at Z sustain the following three forces of the accelaration

next direction OA = P — }(2),

next direction OB = @ — %(gg),

next direction OC = R — %(g’;).

We see that in which in any case of the forces, which the elements of the
fluid. Even if, in fact, at any point, the fluid without operate to be pushed,
hence the another force in the element is not preserved, unless by pressure
p, which this is, as we have computated in above.

[Problem 23] §33 If the fluid of the arbitrary nature is moved by the
arbitrary force, under the stable initial condition, then from which, deter-
mine this motion clearly.

[Solution| Considering (fig.22), the stable fluid, in which the arbitrary
temprature = ¢, suppose it is smooth, and the 3 dimensions of the fixed axes
: OA, OB, OC, to those the normal directions, we consider the arbitrary
particle of the fluid at the point of Z, which is fixed by the 3 coordinates
: OX =z, XY =y, YZ = z, determinated and which is consisted of the
accelarated forces P, §, R, the following direction Zz, Zy, Zz by the axes
of the given and of the parallel. First, to the motion of the fluid we mention,
the stable, initial density of the particle, here in Z, supposed as = g, which
we observe is expressed by such as the function of the four variables z, ¥y, 2
and t. Second, now we put the pressure in Z the given value = p, which is
permanent with respect to the material, uniformal gravity, of which density
= 1 and is given; we write this p with the function of the four variables
z, y, 2 and t. Third, every motion of the particles in Z, which we employ
and observe here is determined by three directions Zz, Zy, Zz, of which
velocities in accordance with Zz = u, Zy = v and Zz = w, we explain
considering of which velocities passing the space a little such as time ¢ in
the sequential time. Now, this situation is observed by the velocities and
the density g, and this relation is determinated such that :®

) (42)+ (50) + (52) 0
dt dz dy \ dz

Therefore, in the above problem, we deduce the element of the fluid in
Z, now this accelarated force as follows :

1d 1d
next.Zx = P — l—dﬁ, next.Zy = Q — ——p, next.Zz =R - ——p.
qdz gdy gdz

811, ¢ is constant, this equation means div u = 0.
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From itself another motion of this three elements in problem 20, each ac-
celaration of the each sequential direction, deduces in this manner, the
expression :

nezt Zy = u(g) +v(G) +w(g) + (%),

u(
next Zz = u(%L) + v %)+w duy 4 (dw)

nest 2z = u(g) + v(g) +w(g) + (&),
1%
w

To which, here, substitute by this body’s gravity a little moment, slide,
weight = ¢ and time and the velocity of the sequencial of the above men-
tioned measure explain, an arbitrary accelarated from the force in 2g acce-
larated force, deduced smoothly, and we get the three following equations

2 d; du du d du
2gP__q£ ap ulZE| +v @ =+ w _d’:>+ (_dt>7
d;
QQQ—%Ja 3‘3 =u gl_lv +v g—; +w %)‘i‘(%)a
d; w w w w

which from the consideration of the density, the motion made by the con-
tinuous, universal, determinated continuous.

Here, we get (1) from (2) and (3).
2.2. Navier’s formulation.

2.2.1. Nawier’s principles.
Navier ([52, pp.389-390]) says :

By the partial differential equations, the geometry represents the general
conditions of the equilibrium and of the motion of the fluid. These equations
are deduced from the various principles which suppose the all which the
molecule of the fluid are susceptible to take the one with reponce to the
other of an arbitrary motion, without oppose any resistance and to slide
without effort on the boundary of the vessel of which the fluid is contained.
But the considerable or total differences, present, in the certain case, the
natural effects with the result of the known theories indicate the necessary
for the adoption of the new notion and to consider the certain action of
the molecule which appears principally in the phenomena of the motion. We
know, for example, that, in the case where the water in the vessel through
the long pipe of the small diameter, the computation contribute to the fluid
of the velocity of the flow which surpass it much, which we observe, and
which is controlled from the differential law.

Navier cites the Euler’s equations ([52, p.399]) :

Il

du du du du
E+udx+vdy+wdz>,

&8 &8 RIS

P - p
Q-Z=p(f+ult+v2 +u),
R- p

dw dw dw dw
E+Ud1+’l}dy +’U)dz>,
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_(_124_@4_@_ (4)
Tdr ' dy  dz’

Here, Navier says his paper’s purpose as follows :

But, owing to the notation state as follows, it is necessary to admit the
existence of the new molecular force, which is developed by the state of the
motion of the fluid. The study of the analytical equations of the force is
the main object which we have intended in the composition of this paper.
(52, p-399])

In [51, p.252], owing to D’Alembert and Euler, Navier used his own equations published
in 1821 ([51, p.250])"but which seem not to be the formation such today’s equations as
what we called Navier-Stokes equations on the incompressible fluid(7). His equations are
as follw :

1d d? d? d? d? d? d: d d: d .
1o - X+eo(3y+ Ly +dyrofyvofu) d oGyl by,

dxdy dxdz dt dx dy dz
ldp __ &2y d?v d%y 2y Pw) _dv _dv ,, _dv , _ dv. .
pdy—Y+E & T3zt + 240y, t 204 g T dr YT g VT W (5)

2 2 2
Lo — 7 +e(Sy+ Ly +38y 2£;z+2j:;z) _dw _dw o dw o, du,
and the equation of continuity (4) where ¢ is sensibly independ of the force which compress
the partial diffrential of the fluid. Maybe in 1821, he was in his experimantal stage to
formulate the Navier’s equations. We can not substitute the operator A, which means
6%2, + 5%27 + 5%27, for (5), because the second terms in the right hand side are more than
Ay with :

d*u v d?w Py du Pw Pw d*v
LICMNCICE dv, du o LW L &M .
Q(dxz ‘g T dxdz)’ 2(dy2 ‘g T dydz)’ (dz2 tzdr T dydz) (6)

In modern notation, the kinetic equation and the equation of continuity are conventionally
described as follows :

ou/dt —pAu+u-Vu+Vp=f, divu=0. (7

Navier says citing Laplace ( Equilibrium of Fluid [41, Vol.1, Chap. 4-8, p.90-239)) :

The consideration of the repulsive force, which the pressure develoves
between the molecules, which M. de Laplace deduced already the general
equations of the motion of the fluid in the 12-th book of Mé chanique céleste,
seems to depend more immidiately on the physical notion which we can
formulate on the property of this corps.

Navier {[52, p.414]) had described the equation samely as today’s vectotial expression
(7) above stated as follows :
from (4), after operating in such a way as, at first by %, and by %, and at last by %,

"Navier cited his paper as follows : dans un Mémoire sur les lois de 1’équilibre et des mouvemens des
corps solides élastiques, que j'ai présenté, le 14 mai 1821 (sic.). This title is none in Graber’s citation
[21].

—333—



BH X (BEHAERA. D2)

then®
d2 d2v dPw _
gf"'%dy"'dgdz_o’
v U dw __
a2t dzdy + dydz 0, (8)

o

w d?u d?v
dz? + dzdz + dydz 0’

therefore (5) turns out :

dp _ ,fd d d d d? d? d2
P-g=r d—z+“£+”?ﬁ+wﬁ)”5(¢z—3+rﬂ+ﬁ)7
dj d d: d: d d? d? d?
Q-4 =»r ?:+“Ev+“33+wﬁ)‘5(ﬁ+@§+;;¥), 9)
_dp _ dw dw dw dw) __ Pvw | d*w | dPw
R-F=p dt+ud:c+vdy+wdz) Elm tagr t ez

and the equation of continuity which is the same as
and %f = f, then this means :

—~

4). Here, if we take f = (P,Q, R)

ou ¢ 1
— —-Au+u-Vu+-~-Vp="f 10
% 5 oVP (10)

If we put u = £ then (9) equals to (7).

2.2.2. Navier’s deduction of the expression of forces of the molecular action which is under
the state of motion.

Navier deduce the expression of forces of the molecular action which is under the state
of motion as follow in ({52, pp.399-405]): We consider the two molecules M and M'. z,y, 2
are the values of the rectanglar coordinates of M and x + a,y + 3, 2 + v are the values

of the rectanglar coordinates of M'. p = /a? + 52 + 72. The velocity of the molecule M
are u, v, w and that of the molecules M’ are
+du +duﬁ+du +dva+d1)ﬁ. dv +dw +dw6+dw (11)
U+ —o+ — —_—, v+ — B+ —v, w+ -t 0+ = 1
iz T T " T T Tt T WY

V' is the quality on which the propotional action depends as follows :
dv dv ,  dv \  yysdw B dw dw

(B g ) B, gty bt
=\ G T\ G TG TR TG Ty TR

The increment of V is as follows :

o 7d8du ddu ddu Bédv  ddv  ddu N\ |y
L At R 50T

dma

+

¢ ddw é
( dy dz

dw ,  ddw
dwoz‘f- 8 ’y)g

f(p) is a function depends on the distance p between M and M’
fo)VeV =
1 fen oo ) ol for By ) oo ne )|
{ a(()du ddu ddu ) + ﬁ(éc;ﬂ &dv bdv ) n 7 0dw (5dwﬁ (5dw7) }

— JERURENY {, G S b e
d:rCH_ dyﬁiﬂdz"y za+dyﬂ' dz | ’kaza-*_ dy +dz

852, p.413]
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here, by symmetry

du dv dv dw du dw
a@ﬂ"‘ﬁ%a——oy ﬁ'(E’Y""Y@ﬂ—-O, aa’y+’y%a—0,
ddu ddv ddv ddw ddu ddw
o PTG = Y Pt PR ey e

Because we integrate % of the sphere, total is to be multiplied by 8.

( { du ddu 4 du ddu 2 12 du ddu 2,2
wa® Tyl T )

dvsdy | dvde) 252
dydx+dxdy)a'g+

dwbdy | dwédu) 22
dzdz+dzdz)°"7+

duddy | duddv) 2432
d:cdy+dydx)a'3+

8L (ior g + gt 4 2B giy?) 4
W TR )Ir
EE TR )
& T EE)ET

dwbdu 2.2 4 duwddwga.2 d_w&i_w74)

& a7 T gy 4 dz

where 1 is the angle of the rayon p with its projection on the af plane and ¢ is the angle
which this projection forms with the a axis, and then

o= pcoscosy, (B =pcosysing, = psiny (12)

We integrate with respect to ¢, % from 0 to § and with respect to p from 0 to oo. By
the formulae of the original function on infinite integral :

c2og 1.l 2 de 1o L
[sinzdz = iz — }sin2z, [ cos’zdr = jz + §sin2z,

[sin®zdz = —}cosz(sin’z + 2), [ cos® zdz = §sinz(cos’z + 2),
. in™—! — . - — . _ -

[ sin™ zdg = —st—zemz 4 2=l fgin»2pdy,  [cos”zdr = L cos™!sinz + 2=t [ cos®? zd,
: m . _cosmily o) __ sin™tlg

[sinzcos™xdr = -2 [sin™zcosdz = 52

Excepting for p,

T . T R m
ot cos i) = cos® 1chos4np = %, B%cost = cos‘51/)s1n4g0 = 10’ v* cos 9 = cossin® p = 0

a*(3? cos 1 = cos® ¥ sin® g cos? p = £,
a?y? cos i = cos® Y sin® pcos® p = T,
1By cosy = cos® 9 sin? psin? p = 5
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Total of the sphere is multiplied by 8 taking € as the common factor :°

8w

e=35 /. " dppts (0) (13)

We get now ¢ of (5), and using (4) it turns out the term of Av of the today’s formulation
(10).

u d?u d?u dudv dwdu
3?:5 a2 T +2da:dy 2dzd.a:’

d%y d*y d’v dudv dudw

£ gz-g-i-?;g—y'g-i- +2dﬂ:dy+2dydz’
w dvdw dwdu
SFHGFTIGE 2% 1 ogu

2.2.3. Navier’s deduction of the expression of the summary moments of the forces caused
by the reciprocal actions of the molecules of a fluid.

Navier uses the above results to seek the expression of the summary moments of the
forces caused by the reciprocal actions of the molecules of a fluidas follows :

o' =pcosypcosp, [ =pcosysing, + = psiny
We calculate dpdiydpp?cosy and it turns out as follows :

o cosp = [[ dipdy cos® 1 cos? o,
8% cosyp = [[ dipdy cos® sin? ¢,
v2costp = [[ dipdpsin?p cos? ¢
F(p) is the same as f(p) in above section, which is a function which depends on the

distance p between M and M'. We integlate ¢ and ¢ from 0 to %, considering the
common value as 7, then we get

r [
< | P Fp)=E
0
We define
E(udu + vév + wow)

for the expression which we seek for the summary of the moments of the total actions
which caused between the molecules of the boudary and the fluid, following the direction
which pass by the point of the separation of the fluid and the boundary. E is the constant
which will be given by the experiment, due to the nature of the boundary and the fluid,
and which can be regarded as the measure of its reciprocal action. Here, we rotate the
rectanglar coordinates for v to coincide with the direction M N of which M is the common

80.Darrigol[15, p.112] interprets that this is Navier’s tensor as follows :

1 2w [ .
=5, dpp*flp) =k, M= /Uij&‘wj'dﬂ
0ij = —kN?(8:;0pur + &uj +0jui) = ~kN? (1w +usi + uij),

where N = 1.
In analogy with Lagrange’s reasoning, Navier then integrated by parts to get

M= fo’l‘jaiwjdsi - /(aigij)wde'
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origin of the both rectanglar coodinates of c, 3,y and o/, 5/, satisfying p =rand ¢y = s
and then we get the new relation of a, 3, from (12).

a=—a'sinr + # cosrsins + ' cosrcos s,
B= o' cost+ 'sinTsins + ' sinrcoss,
v = B coss —4'sins

where each last terms of the right hand-side of «, 3,~ are the original values and the
rest terms are added by the rotation.

F(p)VV =
F
Flp) { o&(—usinr+vcosr)+ B'(ucosrsins + vsinrsins + wcoss)
p

+ 7'(ucosrcoss+vsinrcoss —wsins) }
{ o(~businr + dvcosr) + 3'(ducosrsin s + dvsinrsin s + dw cos s)
+ 4'(éucosrcoss+dusinrcoss — dwsins) }

P-2-p ‘;—1{+u%+vj—z+w3—:)]6u
32—/) %+u%+v%+w%)]6v
R-%_, fi—’f+u%+vi—’:+wd—’:’)]6w

duddy | duddu | duddy | dvddu | dyddu | dwddu , dwidu
3 taaw T tage Ty Vo T a
duddy | duddv | dvddv dvddy | dvddv | dwddy | dw ddy
5///da:dydz Tdy T T 73G9 Tad Tad T o da
du5dw+%%+@__5dw+d_vw_w+dww_w gw ddw 4 qdwddw

dz dz dy dz dz dy Za T dy dy dz dz

+ Sds*E(udu+ vév + wéw). (14)

Here, S means the integration in the total surface of the fluid, in varing the quantity E,
following the nature of the body with which this surface is contact. Shifting d to the front
of & of the middle term of the right hand-side of (14) and by Taylor expansion using the
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partial integral

3—7+—;+—;+2d“” + 242 )du

s// drdydz § (224 + 23 +3%3 @+2j:;)6u
2;;z+2§;z+—,+ % +3%%) 6w

ff e e e e e
+ 5//d1:’dz [(Zu v’ ) ou' + ( ?g/)dv'+ (dv )611)’
+ 5/ dm'dy'[(%ﬁi’ + 31;) )5u'+ (Z—Z+ Z—w—)tf + (% + dl ,)6w']

wancfodu’ dv’ dw'N _, au’  dv” " du” dw” ,,
— 5/ dy"dz [(3d +dy”+5’7)5u +(W+£ﬁ)6v (dz”+—”—)5w
wa prrdu’  du'y L, du’  _dv"  dw"\_, /dv"  dw "
- 5/ dxz"dz [(d — +d$”)5u + <dx” 3W+d——)5 + (d ~ —”-)Jw
waonrfdu” dw"y "  duw"\ _ , du” dv” d ,,
- 5/ da'ay' (G + )0 + (G + 37) ' + (G + dz”)6w
From (8) we get the short express1on as follows :
d2u d*u d*v d2v "’w
// da:dydz d 2 S )ou+ (sz ) ( 2227
dds 2 6 du’  dv' 5v du 1
+E/ yaz 2560 + (F“L(T) (g )
, du dv' dv’ du
+ / dz'dz’ —+£)6 20 +( )
du dv'\N. ,  (dv' d d ,
+ / dz'dy’ —+E)5“+(8?+ )5 +2d,5 W]
" " d 1 du” dv” 7t du" dw” "
- E/ dy"dz [2%7611 + (d ,,+d$”)(5v + d—z,,-+317)6w]
van du” dv"” o dv” du”  duw"y . ,
- E/ dz"d2" | d—’7+3_) +2d —ov/ +(dz”+dy”)6w]
" ” du/I d,U/I " d,Ull dwll " d " y
— //d:l?d ” d;t")u+(d"+—y_)6 +2d dw :l
We get from (14) as follows :
[P-2-p §—§+u%+v§§+wj—g) —s(j—i‘;+f—y’§+ %‘;)]M
= // drdydz < [Q — 5}5 —plL +ul +v% +w%‘z—’) ——6(%‘%+%§+%§)]6v (15)
€

C[R-2-p(Rrut o wd) -
We get (9) from (15).
By the way, F.Graber, a mathematical historian investigates the differences between

[51] and [52] in his paper [21], however, he does not cite precisely this big differences of
the equations between (5) and (9) with the mathematical expressions.
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2.3. Poisson’s equations. S.D.Poisson[60, p.151-152](1829-31) proposed his equations
in 1829 and was issured in 1831, which reads :

dz dy dz

i i
Z:—?"- = deg+u;fz:+v§:;+w§f,
@ =g tul g e
e 3 & +u+olt +wf?

@z
X — ) = Z+elgr+ g + 50 =0,
d? 2 v 2
@ (Y- =G e Gy gh) =0,
p(Z = G) = F +elGt + G + &) =0,
e 1)

dx y | dz
If we put —% =vandf = (X,Y, Z), then Poisson’s equations are equivalent with Navier’s
equations of the incompressible fluid :

%—VAu+u—Vu+%Vp=f.

Poisson contains both compressible and incompressible fluid.

2.4. Stokes’ principle and equation. Stokes says in [65, p.80] :

If the molecules of E were in a state of relative equilibrium, the pressure
would be equal in all directions about P, as in the case of fluids at rest.
Hence I shall assume the following principle :

e That the difference between the pressure on a plane in a given direction
passing through any point P of a fluid in motion and the pressure which
would exist in all directions about P if the fluid in its neighbourhood
were in a state of relative equilibrium depends only on the relative
motion of the fluid immediately about P ; and

e that the relative motion due to any motion of rotation may be elim-
inated without affecting the differences of the pressures above men-
tioned.

Stokes proposes the Stokes’ approximate equations in [65, p.93] :
PR -X)+E-pE+3+5) =0,
P -V +E -G+ G+ =0,
(B —2)+ P - u(EE+ %58+ 48 =0,
drbide=0
These equations are applicable to the determination of the motion of water
in pipes and canala, to the calculation of the effect of friction on the motions
of tides and waves, and such questions.
By the modern vectorial expression, if we take f = (X,Y,Z), then these equations are

turn out as follows :
p(%f——f)+‘7p—,uAu:: , divu=0.
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tij

Inolname ~ |paper lapplication [tensor succession |
1 |A.Cauchy 6](1828) optical into the elastic theory of hght stress tensor

2 [S.D.Poisson 60](1829-31) hydrodynamic tensor stress tensor

3 |G.Green 22](1828),(23](1839) theories of electricity and magnetism |Green tensor|1 -

4 |G.G.Stokes 65](1877) 6,7,8,9,10

5 |A.M.Lyapunov 50](1898) electrostatic problem Green tensor|3

6 |C.W.Oseen 591(1927) hydrodynamic tensor Green tensor|3

7 |L.Lichtenstein 45](1928),[46](°29),[47](°31) Green tensor|P.Levi(1919)
8 F.K.G.Odqvist 57](1930),[58](’32) hydrodynamic Green tensor stress tensor (6,7

9 |J.Leray 42](1933),[43, 44](°34) hydrodynamic tensor Green tensor|6,8
10|0.A.Ladyzhenskaya|[36](1959),[37](1970) hydrodynamic tensor Green tensor|6,7,8,9

11 V.A.Solonnikov 64](1977) 6,7,8,9,10

2.5. The naming of the Navier-Stokes equations. E.Hopf[25] seems to name first
what we call the equations, the “die Navier-Stokes Gleihungen” (“the Navier-Stokes equa-
tions”). J.Leray[42, 43, 44] calls consistently them “des eguations de Navier” (“the equa-
tions of Navier”).

3. THE SUCCESSIONS OF THE FUNDAMENTAL SOLUTIONS

3.1. The invariant tensor in the Navier-Stokes equations. We consider the Navier-
Stokes equations of the incompressible, homogeneous fluid. At first, we introduce La-
grange derivative :

DF6F36FD8368

i w2 Ya D a e
The responding force on the closed surface S, using the normal vector at the point Q :
n = (ny,ng, n3) :

T,=T(u,p)'n, T(u,p)= {ﬂj(%l’)}i,j:l,z,s, T;(u,p) = —pbi; + ,U(Uji + Uij)

Here T;; is the invariant tensor. From Gauss’ divergence theorem

/// pdz+//T(up -ndS =0

From Gauss’ divergence theorem in regarding with div u =0

[ [ onsese [
//ST(u,p) -ndS = ///D(,uAu— Vp)dz

Du  Ou 1 U
— =—+u-Vu=--Vp+vAu, wherev==-
Dt Ot p P p
Here we get (7), assuming the external force f = 0.
Navier deduces the expression in using the rectanglar coordinates, but not by the tensor.
As O.Darrigol[15, 16] cites as in the above footnote about € in (13), we can interpret the
tensor from Navier’s expressions.

wv=2

at-f—u-gmd

3. 52 U,
61:

)
- a—fi)dz,
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TABLE 5. No.3-1 Expression for hydrodynamics by the invariant tensor : ¢;;
nojname&reference source of ¢;; |problem

A Cauchy6, p.225](1828)
S.D.Poisson[60, p.140](1829-31)
G.G.Stokes|[65, pp.90-91](1845) [the Stokes equations
C.W.Oseen[59, p.26](1927) the Stokes differential equations

K.G.Odqvist[57, p.332](1930) |first Stokes boundary problem: pAu; = gz, azk =0

J. Leray[42, p.22,p.55](1933) (25) pAu; — 5"’7 =—-pX; (i=1,2,8), Zk_l 5k =0

X5,

0.A.Ladyzhenskaya[36](1959) [linearized N-S system:Au — gradp = f,div u = 0, ug = 0

linearized N-S system:
0.A . Ladyzbenskaya[37](1970) VAU (z, y) - gradq (@) = 6(z — y)ek,div u* = 0
6G, ey
9 [V.A Solonnikov[6d, p.48)(1977)| 8 ~ AGi+ 52 =0, i ot =0,
where Gijlzs=0 = 6,76(1&)6(21)0(22)

L

QO [ O] Ul sl pof =

TABLE 6. No.3-2 Expression for hydrodynamics by the invariant tensor : t;;
@eﬁnition , where v; is the velocity vector,r? = (z; — z(o)) r>0

1 [ty = Mekdiy + p(vij +05)
2 tij = —pdi; + Mg kdi; + 1(vi; +v54)
3 = pbi; + (6 — 2u(vx, k)é,J wveg +v5:)
Oy —

4 t:k"-‘—+—‘—s—(z’ 2 J3Tm ) p=—2p 2k%=2#—a‘“—( e
5 |Tik = —pdx + l“(m + Qy_,_) = —pdix + ll-(’uki + uik)
6 Q'L_J(g, y) = 8”” [_J. + .._"_ﬁlgy.L__L_} Pi(z,y) = _1_ .~r—:c.-
7T = & [ + O], Py = &5
8 [Tix(v) = —0Fp + v(52 + S) (cite from [57))

Gyj = —25,0; — %%ﬁ—,‘ - 5;5;,—75:35( )s

0

_ @)y 8 1
Pi—_z(;zax,axaﬂ"'znax. _(‘2‘5 3721

3.2. Successions of the invariant tensor. We show the tensors of Cauchy[6, 7, 8, 9,
10, 11, 12], Poisson[60] and Stokes[65] in Table 4,5 and 6. We show here the construction
of the tensor, for an example, by C.W.Oseen[59]*.

3.3. Fundamental solutions for the condition on the velocity components. !

We turn back to our problem, to determine the fundamental solutions of the
Stokes differential equations. We said that we shall select these fundamental
solutions so that the detail functions v depend only two point P and P,
moreover, that the system of these functions in all themselves way of the
coordinate depended, we also select the right hand direction system. It
is easy to assume that these new functions of the components of the one
than the transformation (10)!? of the invariant tensor with the range there
are 2. We have used from these underlying, deduced, a tensor which in an
arbitrary right hand direction system of the following components : t;; =

ik AP(r) — o) 2o (z; — :vg-o))2, r > 0---(11), where é;; is here

Ozjxy ’
and bellow the jk-component of a tensor, these diagonal components of
OThe following “We” is of course the author of [59].
UThis English version of C.W.Oseen[59] was translated from German by Shigeru Masuda. We use
CbT (: Comment by Translator) in pages 1ff to avoid the confusion between the original comment and
ours one.

12¢bT - z; = aj + Lixx, z§°)' =a;+ ljkxl(cO)'

—341—



A(I’Z—, tjk=—+ , Pk=

HE ¥ (EEAYRR. D2)

(4 = k) have the value 1 and the else components have the value 0. The
three functions #y, tox, tax satisfy always, i.e., when & have the value 1, 2, 3,

the equation : %t;:i]',‘— = 0( 2). When we define that ® of the equation

D AZAD =0, (Az = W + —7 + ﬁ:) -(13) should be satisfied and
when we put : —ua%kAI@ Dk, so we have for all admitted j- and &k-value
D pAgtiy — %Z—J’? = (0---(14). For these k-value ( 1,2 and 3 ) and also the
three functions tx, ta, tax and pi are one solution of the Stokes equation
i.e., we can put the equation (13), ® depends only on r, to the familia
transformation of A in the polar coodinate in the form : %(%@ = (0. These
generalized solution is also ® = ar? + br + ¢ + g, where a, b, c,d are the
constants. We put from the basis, which we define soon, <I>(r) =r. We
have then :

2 6 (T3 — zﬁo’)(zk - Zgo)) g1 _o (z:;c - m(o))
T'

-2
u@x T

We observe now a domain B of (2, T3, z3)-space. F is its boundary surface.
We assume that the Stokes dlfferentla.l equation has a regular solution in B.
We show with PO = (x9, méo), Ty )) of an arbitrary point in the interior of B.
We surround with a sphere with r = ¢ and select ¢ so small that this sphere
lies in the interior of the F. B(e) is a subspace of B, which includes the
exterior of the sphere with r = €. We use the formula (2)'3 on the domain
B(e), and we put with v = t;x, § = pr. The boundary is consist of the
two subspaces of F' and the sphere with r = e. Because the value of 7t
is over even in the point of P(® is stable and because the boundary of the

r T r3

sphere with r = ¢ is propotional with £2, we have : lim,_q fiotin (p%f -

pnj) dS = 0. Moreover lim_q . __u; (/,L—df} — pknj)dS = lim,_,q | {uk +

Jr=g
3u;(z; — x(o))f"—_ﬁi—lds We put : u; = u§0) +71yp, where u(o = u;(PO®),

and because we put with ¢ as a bounded function of the point P in the
neighborhood of P(¥. We have then because

/f 3 i j’f (w5 = =)z =) dS _ 4

ik
r2 r2 r? 3"

lim/ U (u% ~pknj)dS — 87T,LLU};(P(O))~

e—0

Therefore :
uk(P(o)) _ 8_]71:/; ]l; {t].k (#% - pn]) — U (u% - Pkﬂj) }dS.

When we get the 12 functions T}, and P, which in the interior of the
boundary F, we can put in the form of : T, = t;p + Tjk, P = px + Tk,
where T, pr for all k-value (k = 1,2 or 3) of the interior of F, the regular
solution of the given Stokes equations, so we can deduce directly owing to
the product of (15) t;k, px by Tk, Py If the new T} all vanish when the point

13~ ! s \ ) dy; PP
30hT - S I';)j (;u%,-;- - p‘nj/l - uj —(,U. oL — g ;'dé =0 {2

(15
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P enters onto the boundary F, so we get : ux(P©) = SW Jeu; (,u——-’i -

4. THE SUCCESSION OF THE WEAK SOLUTIONS

4.1. Leray’s introduction to construct solution turbulente. Leray[44, p.195] says
14

If T should succeed to construct the solution of the equations of Navier which
become irregular, I shall have the right to insist that there exist effectiv-
elly the solutions turbulentes marely no reducing, in the solutions regulieres.
Similarly, if this proposition should be false, the notion of solution turbulente
which will play no role any longer in the study of viscous liquid, will do no harm
to its interest : it must well present the problems of mathematical physics
for which physical cause of regularity is not sufficient to justify the hypoth-
esis of the regularity made in setting of equation. To this problem we can
then apply the considerable resemblance to that which I expose here.

4.2. Leray and Hopf. E.Hopf[28] comments on his own lemma 5.1 to the J.Leray[44] in
[28] : 1

In the Rellich’s theorem, the convergence of the x-integral on the quadratic

of the derivation is presupposed. Our convergence presupposition relate

even to the (z,t)-integral and is therefore better adapted to the situation

in our problem. Leray prove and use Lemma 2, which is even near to

Rellich’s lemma, operate like this theorem, only with (z)-integral. Our

proof of convergence is more direct.

5. THE SUCCESSION OF THE GENERALIZED SOLUTION / THE STRONG SOLUTION

5.1. Sobolev embedding theorem. We see Sobolev[63] owes to the potential theory
from Weyl[69]'6. [cf. Sobolev|63, pp.42-54], §1.7 ( The spaces of LY and W.” )] In his
contents, he deduces his embedding theorem explaining by the same as Oseen’s tensor[59]
with following his decomposition :

We consider also the space S) of all polynomials of degree at most [ —1. The

so-defined norm will be invariant under all rotations of axes of cordinates,

while in distinction from the norm on L;, it will no longer be invariant under

the translation of the origin. Indeed the quality > k!/(aq!lag! - - - ap! )ama2 o

is one of the invariant of the tensor a4, gy, and therefore this quahty is pre-

served under orthgonal transformations. ||cp|| = |hells + HchpHL(,) =

[Tl + ||<p||L(,) -(7.5). The equation (9) in [34] '7 is deduced from
the equations : (7 4), -+, (7.15) after substituting with n = 3,p = 2 and

MThis English version from French was made by Shigeru Masuda.

Y5This English version from Germany was made by Shigeru Masunda.

161, [63], Sobolev does not mention on Oseen’s tensor [59] but Weyl[69], and moreover
Ladyzhenskaya[?] does not mention on Sobolev[63] but Weyl[69] in the references of one of the last
papers in her life. She owes more to [69].

"The equation (9) of Klselev & Ladyzhenskaya[34] is as follows :

u(z) _: s fQﬁ u(y)v(y - fn, Lx = %x_y’f‘pyk ‘:0 y'v(m + 0 )Pzd!’] dy = ¢ +
+ Jo, ;%wk-\m,y)soyk( )dy =cut u( z) (9).
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I =1(i.e. W} ) or 2(i.e. W? in Theorem 4 in §5 in Kiselev & Ladyzhen-
skaya’s paper[34] ). We refer below only (7.14) and (7.15) in [34].

o(P)
= X @ @)™ [ G (@ - Dol ing

Eot.'sl—l

1 s 75 0@
wroan (@~ T P =Ty 29 gy (71
’ /n e }:¥=zw (@ )8y118y22 - Oyn” dvg. (T14)

If the point 7 is the origin, then (7.14) passes into (7.12). Further, we set
$(P) = S(P) + ¢*(P)---(7.15). Thus, for functions ¢ having continuous
derivatives up to order I, ¢ coincides with ¢ on €2, and for functions ¢ €

Wp(l) it is equal to ¢ almost everywhere on (2.

5.2. Kiselev. Kiselev(33] is one of the pioneer of the generalised solution and the
strong solution as follows :

Lv = & + Zi:l”k% —vAv = —grad p+f---(1), divv = 0---(2),
V|i=o = a---(3), v|]s = 0---(4), where f = f(z,¢) and a(z) is the given
vector, v is the viscosity coefficient, which, for the brief description’s sake,
(we) deal as the constant. (We) call the vector v the generalised solution
of the problem (1)-(4) on @, if v € L?(Q;), exists generally in the sense of
S.L.Sobolev[63].

Theorem 1 (Uniqueness theorem). The problem(1)-(4) have in Q; not
more than a generalised solution

Theorem 2 (Existence theorem 1). Supposing a € Wém and satisfies
the conditions (2) and (4), f € La(Q:) tamd % € Ly(Q:) and satisfies the
condition |[a|| { |f + La|| + |[f]| }s=0 < % where 3 : a constant, depending
on the domain Q, and the symbol || - || means the norm in Ly(?). Then the
problem (1)-(4) have the generalised solution, in any cases, for allt € [0, T,

where T : an arbitrary number < [, satisfying (||a[| + f0T||f||dt) (Hf -

T 124
La||¢=¢ + maxp<e<7 |[f]| + fo ||%|ldt) < F; 1

5.3. Kiselev and Ladyzhenskaya. They say in [34]:

the difficulties to seak for the classical solutions of the problem (1) and
the apprehension of it, which this problem may not have such solutions <«
in the large > , forced to seak for another <« generalized solution situated
in the problem (1)>>.

In (our)'® paper, (we) study the problems of the incompressible viscosity:

ov ov .
———uév—i—kaa—Ik:—gradp—i-f(x,t), divv=0, vig=0, vjimo=a (1)

18We refer the original [15] in using (we/our). This English version from Russian was made by Shigeru
Masuda. The first English version : Amer. Math. Soc., Transl(2) 24(1963) by John Abramowich without
corrections and comments. After conveying deep gratitude to him, we corrected the original misprints,
amended phrases and words.
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and the first boundary value problem for the system
av N |
—8—{ — I/AV'F;Uka—IIc :f(zvt)a V|S =0, V|t=0 =a (2)

Formulation 1. (We) shall call it a generalized solution of problem
(1), that is the vector function v(z,t), having the generalized derivatives
€ Ly(Qr) of the first order, summing to the power of 4 in a plane of t =
const for an arbitrary profile Qr, [, ¥, v{(z,t)dz < const, and satisfy-
ing the conditions: div v =0, v|g =0, v|=o = a and the equality:

I [?1@ +vZ 22—y 22— 18ldudt = 0.+ (3) Y® € Ly(Qr) such

B:x:k [o2 7%

that 2 e Lz(QT) div ® =0, (I’Is =0. O

Formulatlon 2. (We) shall call it a generalized solution of problem
(1), that is the vector function v(x,t), having the generalized derivatives
€ Ly(Qr) in the form of a?av and its all belongings satisfing the same con-
dition as in Formulation 1.

Formulation 3. (We) shall call it a generalized solution of problem
(1), that is the vector function v(x,t), having the generalized derivatives €
Ly(Q7) in the form of ﬂ satisfying the conditions: divv =0, v|s=0and

the equality : fo Ja [v— —y 0% vkvgf—k + f@} dzdt+ [,a®(zr,0)dz =

axk aIk
0---(4), ¥® € W3 (Qr) such that div ® =0, ®[g=0, ®r=0. O
(The following 3 theorems are new contents in [34] in comparison with
(32, 33].)

Theorem 3. The problem(1) and (2) can not have more than unique gen-
eralized solution in the sense of Formulation 1 and moreover, Formu-
lation 2. [J

Theorem 4. Problem(1) and (2) can not have more than unique general-
ized solution in the sense of Formulation 3. O

Theorem 5. If a and f are the continuous functions satisfying Holder con-
dition for x with such as positive power : 7y, then the problem (2) has
the generalized solution in the sense of Formulation 3. Unigqueness
has been proved in §2. For this solution, we have the strict inequalities :
vi<¢, fOT Yok vz, |12dt < ¢, here a constants ¢ and c;, depend on only
the value of v, T and max(|al,|f]). O

(The following 2 theorems are same as Kiselev[32, 33]. Theorem 6 is
about a strong solution which is already in [33].)

Theorem 6. If a € Jo1(Q) N WZ(R), and f and £; are € Ly(Q:), @ =
Q x [0,1], then the problem (1) has the generalized solution in the sense
of Formulation 2 on the cylinder Q7 = 1x [0, T, such thatT : no-smaller
than an arbitrary number, depending on v, |a|wz(q), N1l ac0s 1l zacon)

and the scale of the domain Q.*°

9¢f. Kiselev [33, p.27].
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Theorem 7. 2 If f = 0 ( i.e., the exterior force has a potential) and
satisfies the conditions ||al|||Lal| < %35, B = V/3c3, then the problem (1)
has the unique generalized solution under an arbitrary T'. This solution
approaches to zero ast — o0, as an element of W1(Q1). The existence of
the solution "t > 0 under the conditions of the theorem, follows as we have
showed just now from Lemma 6 and 7. O

5.4. Ladyzhenskaya. #

The motion of the viscous incompressible fluid for the model of Navier-
Stokes is described by the four functions : u(z) = (ui(z), ua(z), us(z)), andp(z),
satisfying the equations : Au —grad p = Zi=1 uka%’; +f, (1), divu=
0, (2), where f(z) = (fi(z), fo(z), fa(z)) : the vector of the mass force,
u(z) : the vector of the velocity of the flow of the fluid at the point of
x = (z1, Z2, z3), and p(z) : the pressure at the point. For the brief, of the
description of the coefficients of the viscosity and the density of the loca-
tion, we put by regarding as 1. We shall study the motion in this domain
Q of the 3 dimensional, Euclidian space Ej, having its fixed boundary S
( S may consist of an arbitrary isolated, closed surface ). The case of the
moving boundary, we assume the similar investigation. To the boundary S,
we assume the essential, incidental condition : u|s =0, (3).

Theorem 1. The problem (8) has u and moreover unique generalized
solution from H for any f, being the linear functional in H. O

Theorem 2. The problem (1)-(8) in the bounded domain Q2 has, at least,
the unique generalized solution from H for any linear functional £ in H,
in paticular, for all £, integrable to the power of -g in Q. O

Theorem 3. The problem (1)-(3) with zero satisfy in infinity, have, at
least, the unique generalized solution € H(QY) for the unbounded domain
Q, if all £ define the linear functional in H(QY) ( the enough conditions of
this given in (2)-(3) and Result 1). 0O

Theorem 4. The problem of (1),(2) and (14) have at least, the unique
generalized solution for all f, being by the liniar functional in H(Y). O

Theorem 5. The problem of the sketching the system n of the solid, the
flow equal in infinity : u, = const, have always, at least, the unique,
generalized solution with respect to all £, satisfying the linear functional
i H, in paticular, with respect to £ =0. O

Theorem 6. The problem(1)-(3) have, at least, the unigue solution u;(z),
continuous together with derivatives in the first order in Q and having con-
tinuously differentiable in the second order in the interior of (1. The pressure
p(z) has a continuous in ) and continuously differentiable in the interior

Def, Kiselev, [33, p.30},(7, p.874].

21This English version from Russian with comments was made by Shigeru Masuda. The first English
version : Amer. Math. Soc., Trensl{2) 25(1963), 173-197, by Henry Merkelo without corrections and
comments. After conveying deep gratitude to him, we corrected the original misprints, smended phrases
and words on the translation end added our comments for understand as possible as we can.
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of . With respect to fi(z), we seem such that they satisfy the Holder’s
condition with an arbitrary positive constant. [

5.5. Prodi. * Prodi[61] is maybe one of the inventor with J.L.Lions [48]% of the modern
style conbinating with the function spaces :

i

o
(9]

when B is a space of Banach, (we) put u € LP(0,7; B). This means as
follows : wu is the function of ¢ with the value in B, and integrable to
the power of p within the interval : (0,7). In special case, LP(0, 7; LF) is
equivalent with LP(Q2 x (0, 7)). By setting p and ¢ as the number such that

p > 3, :; +§ = 3. (We) have evidently 2 < ¢ < 6. oui u,;%%l_' — pdou; =

3t
Bu, v p

3:17_1'
Theorem 1. A function u which is a solution of the defined problem is

unique if satisfing the following condition u € LF’%(O,T; LP())) by the ar-
bitrary value of p, with 3 <p < 400 . U
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