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According to his diary, which Bernoulli called Meditaiiones, the main ideas were

developed during the 80s of the 17th century.
Definition of probability

He probably realized at one stage that the outcome of any real phenomenon is
uncertain, where uncertainty could not administered to some special cause. For some
phenomena variability in the outcomes is large, for other it is small. The occurrence of
certain events is preferred, the occurrence of others neglected.

Thus, in a given situation each possible event carries a degree of preference similay as
in a given situation any object has a certain temperature.  Jakob Bernoulli defines
The probability (of an event) is the degree of certainty (of its occurrence) and differs
from tbe latter just as a part from the whole.

Determining probabilities

The probability of an event exists because of our experience. The guestion is how to
determine its actual value. An satisfactory answeyr could change the world. In the 90s
Jakob Bernoulli succeeded to prove that determination of actual values of probabilities
is possible. He notes:

It is possible to make so many observations that it 1s arbitrarily more probable that the
proportion of trials in which the one or the other side gains lies between two given limits
which can be arbitrary close to each other than outside these limits.

In our words Bernoulli developed a procedure for measuring the actual value of a
probability of an event,with arbitrary large reliability and accuracy depending on the
expense,

Bernoulli characterizes his findings:



Human beings use 1n their daily life the same procedure. It is clear to everybody

that 1t 1s not sufficient to have only one single observation, but that a large number

of observations are necessary.

He notes about the significance of his findings:

I judge this result as more valuable as if I would have succeeded in finding the
quadrature of the circle; because even if the latter could be completely found it would be
rather useless.

With other words Jakob Bernoulli selected as evaluation criterium for his results

their usefulness rather than the mathematical difficulty. Consequently, Bernoulli did
not judge it mathematically but scientifically.

Defining the Science of Stochastics

Having explained the probability of an event as a quantity which exists according to our
experience and having developed a method to determine scientifically its actual value,
Jakob Bernoulli defines a new branch of science:

(Ars Conjectandi Part IV. Chapt. IT X )

16 comjecture something means to measure Its probability. Therefore, the Art of
Conjecturing or Stochastics 1s defined as the Science which deals with measuring
probabilities of events as accurate as possible, so that we may decide and act as it Is
better, more satisfactory and more founded. Fxactly this constitutes the wisdom and

prudence of philosophers and statesmen.

During the first years of the 18th century, Bernoulli had written down his findings in
his masterpiece which he entitled Ars conjectandi, i.e. the Art of Conjecturing or in
Greek stochastike, probably having in mind La Logique which in Latinwas entitled Ars
cogitandl
Beginning and end of Stochastics

Before Jakob Bernoulli could complete and publish his masterpiece, he passed away in
1705. Finally after 8 years the Ars conjectandi was published by Jakob Bernoulli's
nephew Niklaus. However, in the meantime several other approaches to probability of
well-known scientists were published and discussed in Europe. In Great Britain
Edmond Halley published a more statistical approach, in Germany there was Leibniz
with his ideas and in France many renown scientist were working in the field.

The result were many ideas, definitions and methods having the same aim but being

not consistent.

The Science of Stochastics was forgotten before it could be firmly established.
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