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1. Prehistory of Algebraic Number Theory
1.1 P. de Fermat (1601-1665)

Pierre de Fermat is the great grand father of the modern number
theory. He himself published only few of his findings and proofs which
he suggested to have obtained. However, what he found on numbers
succeeded in attracting Euler. Even with his gifts on mathematics it
was not an easy task for Euler to reconstruct what was in the wide view
of Fermat. All through his life, however, he could finally obtain proofs
and a few disproofs to all but ‘the last theorem’ which Fermat stated on
numbers. Then Lagrange and Legendre followed; and Gauss founded the
basic frame work of a modern science on numbers on the fertile ground.
Hence it may be allowed to call Fermat the great grand father of the
modern number theory and Euler its grand father.

We point out here just one of Fermat’s theories which we may clearly
understand as arithmetic of the quadratic field Q(v/~1).

$ Determination of the numbers of form a2 + b2, a, b € Z.

On the days of Fermat it has well been recognized that the numbers
of form a2 + b2, a, b € Z, are closed under multiplication; we may even
say that Fermat and some of his contemporaries must have been familiar
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with the formula
(a® + Nb¥*)(? + Nd?) = (ac = Nbd)? + N(ad F bc)?

for integers N with small absolute values.
Fermat found all the ‘generators’ (= ‘atoms’) of sums of two squares
under the multiplicative structure ([Fe-1891].11.213-214,221-222);

a prime p divides a primitive a® 4 b?, a, b€ Z
—p=a’+b% a, beZ
<~ p=1 mod4

¢ He also handled binary quadratic forms z2+2y?2, z2+3y? ([Fe-1891].IL
313,403,431-436) and z2 — 2y? ([Fe-1891].11.221,224-226,434,441). As
for the last case, he recognized the importance of the solution (1,1)
of the equation z? — 2y = —1 which represents the fundamental unit

= 1+ +/2 of the real quadratic field Q(+/2) though, of course, he did not
directly work with these irrational numbers; he used (3,2) and (3,—-2),
ie. €2 =3+ 2v2 and €72 = 3 — 24/2, when he needed a unit e with

Nowaele) =1

{ He had a firm belief that he found a new science on numbers in his
various findings ([We-1984].118-119).

1.2 L. Euler (1707-1783)

¢ Euler investigated in binary quadratic forms z? + Ny? for N =
2, 3, 5, 6, 7, 14 and also 17 ([Eu-1911].1-2.6-17,196-199,556-575,1-3.218-
239,273-275); he added an important remark that a solution (a,b) of
2?2 — Ny? = 1 provides a good rational approximation a/b for vV'N.

As for quadratic irrational numbers, he finally introduced them into
the theory of binary quadratic forms in his book Algebra ([Eu-1911].I-
1.1-498).

¢ He was aware of the quadratic reciprocity law ([We-1984].209,218-
219).
1.3 J. L. Lagrange (1736-1813)

¢ Lagrange started to handle all of the binary quadratic forms with
a fixed discriminant D simultaneously, and introduced the equivalence
classes,

{binary quadratic forms with a fixed discriminant D}/GLy(Z)
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in his Recherches d’Arithmetique ([La-1867].111.697-758,759-795). This
set of classes corresponds to the ideal class group of the order Z + Zv/D
in the quadratic field Q(v/D).

2. Prelude to the Birth of Analytic Number
Theory

2.1 L. Euler (1707-1783)

Euler found and proved important results on the infinite series

1 1 1 1
C(s)=1+§+§+;§+gg‘“
which we now call Riemann’s zeta function, and on some other related
series (cf. e.g. Introductio in Analysin Infinitorum, [Eu-1911].1-8). One
of them is the Euler product formula:

1+—1—+l+—1-+l+etc— !
25 ' 3s 45 ' 5s T A-H0-5HA - -L) ete

where the product on the right hand side is taken over all prime numbers.

¢ In the case of s = 1, we have

1t 2 e = !
23 4 5 Ta-Ha-Ha-Ha-1) et

The left hand side is the harmonic series whose n-th partial sum is as
large as logn as n tends to infinity. (Euler denoted it by logoo.) Hence,
first of all, the Euler product shows that there exist infinitely many prime
numbers. By taking the logarithm of both sides Euler pointed out, for
example, that the sum of all reciprocals of primes

ST S S
g T3TETRT &

has infinite magnitude as large as loglog oo ([Eu-1911].1-14.87-100).

¢ He was also able to determine the values of {(s) at positive even
integers;
2

=T, ¢n) =51y 2 oy

where by, is the nth Bernoulli number ([Eu-1911].1-14.434-439).

— 165 —



2.2 A.-M. Legendre (1752-1833)

¢ In his book Recherches d’Analyse Indéterminée ([Le-1785]), Legendre
clearly stated the quadratic reciprocity law and tried to prove it. In the
course of his trial, he used the Prime Number Theorem in Arithmetic
Progressions. He had a strong belief in it. He himself, however, could
not find any effective ways to go. And he could not complete his proof
of the reciprocity law either. It was Gauss who first gave a full proof.
He published two different proofs at the beginning of the new century;
he put them in his epoch-making book Disquisitiones Arithmeticae ([G-
1801]). A little later in 1837, Dirichlet was to give a genuine proof to
the prime number theorem in arithmetic progressions in [Di-1837b]; it
should be regarded as the year of the birth of analytic number theory.

{ Legendre is the first author who used the terms ‘theory of numbers’
instead of ‘arithmetic’. The book was published in 1798 with the ti-
tle Essai sur la théorie des nombres ([Le-1798]). The third edition of
the book appeared in 1830 in two big volumes with the simplified title
Théorie des Nombres ([Le-1830]).

In the book, he introduced the counting function of prime numbers

7(z) = the number of primes not exceeding z,

and stated that 7(z) is approximately equal to z/(log z —1.08366). (The
symbol ‘m(z)’ for the function was introduced later by N. Nielsen [Ni-
1906].) He was unable to prove this. After some contributions ([Tc-
1848,-52]) of P. L. Tchebychef (1821-1894), Jacques Hadamard (1865-
1963) and Charles Jean de la Vallée Poussin (1866-1962) independently
proved the Prime Number Theorem later at the end of the 19th century
([Ha-1896] and [VP-1896)); it states

lim m(z)

=,
2—00 gz

In a letter with the date 31/6064321219 (August 24, 1823) to his friend
B. Holmboe, N. H. Abel wrote about the statement of Legendre on 7(z);
he picked up no other than this from the Essai because he thought it the
most remarkable result in mathematics ([Ab-1902], Correspondence 5).

In 1863, the second volume of Gauss’ Work [G-1863] was published.
It contains a letter of Gauss to Encke dated December 24,1849 (pp.444-
447). According to it, he obtained Lambert’s table of logarithms with a
table of prime numbers as a supplement in 1792 or 1793 and was aware
that the integral [ % numerically approximates m(n) very well.
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3. Algebraic Equations and the Fundamental
Theorem of Algebra

3.1 Ars Magna

In the 16th century a monumental step toward a flourishment of al-
gebra was taken in Italy. Scipione del Ferro (1465-1526), Professor of
University of Bologna, found a formula for a root of the cubic equa-
tion 28 + az = b, a > 0, b > 0. At the time the common way to
write and handle algebraic equations was the geometric one. Neither
the concept nor the symbol of the ‘number 0’ were introduced in Europe
yet. Then cubic equations were classified into several types. Scipione del
Ferro succeeded in solving one of them. Challenged by Niccold Tartaglia
(15007-1557), he selected one of his disciples, Antonio Maria Fiore, for
the mathematical contest. The challenger Tartaglia worked hard for it
and succeeded in finding a formula for a root of another type of cubic
equations besides del Ferro’s by the day of the contest, and won an over-
whelming victory over Fiore who armed only with the formula of his
teacher.

After a while, Girolamo Cardano (1501-1576) learned the formula for
the above equation of del Ferro from Tartaglia after eager and insistent
requests. Then he succeeded in solving all types of cubic equations.
Moreover, one of his disciples, Lodovico Ferrari (1522-1565), was able
to solve biquadratic equations. He reduced it to cubic and quadratic
equations. Cardano published all of these results in Artis Magne Sive
de Regulis Algebraicis [Ca-1545] (cf. [Ca-1968]).

¢ A root of the cubic equation z2 + az + b = 0 is given by the formula

3\[12—1’ G+ E1+ 3\/ T G@r+ G

if we choose the two cubic roots properly. Cardano and his disciples have
already well understood that the cubic equation has three real roots if
and only if the square root 1/(32)2 + (%)3 is imaginary, that is, ()2 +
(%)® < 0. Then they became well acquainted with imaginary numbers,
perhaps to be ready for mathematical contests. Rafael Bombelli (1526-
1572) wrote up a perfect treatment of complex numbers in his book
Algebra ([Bo-1572)).

The Ars Magna contains many cubic equations with three real roots.
Cardano, however, did not use imaginary numbers nor the formula to
obtain these roots. Here he handled only those equations for which one

can find a real root almost at once. Then he factored out the linear term
to get quadratic equations.
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He introduced imaginary numbers in Chapter XXXVII On the Rule
for Postulating a Negative with the following problem ([Ca-1968], p.219):

Divide 10 into two parts the product of which is 30 or 40.

He gave the answer 5 + /—15 and 5 — /=15 in the case of 40.

It should be noted that imaginary numbers could not have been num-
bers in reality for them at their time. These were not mathematical
reality but something belonging to arts with which they tacitly handled
cubic equations and other surely existing objects of algebra.

3.2 The Fundamental Theorem of Algebra

D. S. Smith says that Peter Roth (1580-1617) was the first author
who openly stated the Fundamental Theorem of Algebra in 1608 ([Ro-
1608]); cf. [Sm-1925].11.474. Then Albert Girard (1595-1632) put it forth
in his book Invention nouvelle en l’algébre [Gi-1637]. An important step
was made by J. le Rond d’Alembert (1717-1783) in his memoirs [dA-
17486]. He tried hard to show that a (non-constant) polynomial with real
coefficients has a root of the form a + bv/—1, a, b € R, if it does not
have any real roots; then it was not very hard for him to show by this
that a polynomial has the same number of roots as its degree.

Lagrange opened the gate toward investigations in the mechanism
hidden behind the relations of roots and coefficients of a polynomial in
[La~1770]; there he introduced ‘Lagrangian resolvents’.

C. F. Gauss (1777-1855) published his first proof to the fundamental
theorem of algebra in [G-1799]. (He implicitly used the completeness of
the field of real numbers.) By this, anyway, he provided not only algebra
but also analysis with a rigid universal domain, the field of complex
numbers.

4. The 19th Century begins
4.1 C. F. Gauss (1777-1855)

< The number theory of the 19th century began with the celebrated book
of Gauss, Disquisitiones Arithmeticae ([G-1801)). He began it with the
concept of the congruence relation of integers, and introduced the term
‘modulus’ and the symbol = with numerical examples, —16 = 9 (mod 5)
and —7 = 15 (mod 11). This book contains two complete proofs to the
quadratic reciprocity law, and a modern theory of cyclotomy in the last
Section Seven. He published his papers toward biquadratic reciprocity
law [G-1828] and [G-1932] 27 years later. In 1801, however, he had al-
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ready prepared Section Eight ([G-1801*]) of Disquisitiones Arithmeticae
which was posthumously published by Dedekind in 1863. Giinther Frei
recently pointed out in [Fre-2001] that “Section Seven on Cyclotomy
served only as a preparation for Section Eight which was to contain a
Third Proof of Quadratic Reciprocity Law, a proof Gauss planned to
generalize to Higher Reciprocity”.

Anyway Gauss introduced the ring Z[/—1] for the biquadratic case
in 1828, and proposed a research problem of establishing Higher Power
Reciprocity Laws though he might not have done it explicitly. Hereafter
through the century or more, this became a principal motivation for
developing algebraic number theory. First in 1844 Gotthold Eisenstein
(1823-1852) made important contributions for the cubic case in a series
of papers [Ei-1844a-¢]; he had naturally to develop arithmetic in the ring

Z[i'%g] of the cyclotomic field of cubic roots of unity. Then Kummer,
Kronecker, Dedekind, and so on, followed.

4.2  N. H. Abel (1802-1829)

We have to pick up N. H. Abel who did not leave any distinguished
works on number theory but supplied important sources of ideas for the
development of algebraic number theory due particularly to Kronecker,
and indirectly to Zolotareff. One of his works we mention here is on
algebraic equations, and the other is on elliptic functions.

Before we go into these main topics, however, we should also pay at-
tention to his work [Ab-1826] on elliptic and hyperelliptic integrals; this
indirectly motivated Zolotareff for his divisor theory in algebraic num-
ber fields (cf. Section 7.4 below). Abel studied there those hyperelliptic
differential forms % with polynomials p and R in z whose integrals are

given as logarithm functions of the form log %‘_’"—‘\% with a polynomial y,

and characterized them in terms of the continued fraction expansion of
the square root +/R. His criterion is the expansion to be periodic and
of a certain special form. In the last section Abel deals with elliptic
integrals, that is, the case where R is a monic polynomial of degree 4.
He explicitly stated that the integral

(:r+ %ﬂ) dz
\/(:r2+3&2_—1)2+ (\/5—1)29:

could be expressed by logarithms.
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It is apparent that the work of Legendre [Le-1811] or its revised version
[Le-1825] on elliptic integrals was in the background of this work of Abel.

{ Abelian Equations

As is well known, Abel succeeded in proving that there cannot exist
any algebraic formulas for roots of general polynomials of degree equal
to 5 ([Ab-1824]). This is an important and essential development on
algebraic equations after Lagrange opened the door by his work [La-
1770] as we pointed it out above in Section 3.2. Abel left the full-scale
theory of algebraic equations to Evariste Galois. His interest tended to
characterization of solvable equations, and found the Abelian criterion
because of which we now have the names Abelian groups and Abelian
equations. It is Kronecker who introduced the word ‘Abelian equations’.
He first used it in [Kr-1853] to mean cyclic polynomials, that is, poly-
nomials with cyclic Galois groups. Then he enlarged its use to mean
polynomials with Abelian Galois groups (cf. [Kr-1857a,-1877]).

¢ Elliptic Functions

Abel developed a beautiful theory of elliptic functions in [Ab-1827],
and found quite new Abelian polynomials in the work. Legendre used
the word ‘elliptic functions’ before Abel; however, all he worked on were
elliptic integrals with analysis in the real number field. In [Ab-1827]
Abel started his investigation by considering inverse functions of elliptic
integrals by utilizing complex analysis. Since then we have customarily
been using the word ‘elliptic functions’ in Abel’s sense. His arithmeti-
cal instinct did not miss smelling out the importance of elliptic functions
with complex multiplication; and he attracted Kronecker especially with
a few explicit numerical examples. The terminology ‘complex multiplica-
tion’ was also introduced by Kronecker who fostered ‘Kronecker’s dream
in his youth’ (see below Section 7.1 and [Kr-1857a,-1880b]). The theory
of complex multiplication must also have supplied sources for Dedekind
to formulate the concepts of ‘modules’, ‘orders’ and ‘ideals’ of an alge-
braic number field in [De-1871,1877a,-1879,-1893]. (See below Sections
7.2 and 7.3.)

5. Birth of Analytic Number Theory

As Euler is the father of modern number theory (cf. 1-1), then so
is P. G. Lejeune Dirichlet (1805-1859) of Analytic Number Theory. It
was born in his paper [Di-1837b] where he proved the Prime Number
Theorem in Arithmetic Progressions conjectured by Legendre (cf. 2-2).
His strategy was to follow Euler’s idea of utilizing Euler product for-
mulas. However, none of the modified harmonic series for arithmetic
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progressions have necessary product formulas as they are. To overcome
the difficulty he brought out a brilliant idea; he utilized all of the modi-
fied harmonic series with initial terms which are relatively prime to the
fixed common difference, and put them together by Dirichlet characters
defined for the common difference. Then the orthogonal relations of the
characters lead us to the desired end. Thus Dirichlet’s L-series were sent
out into the world. Let us see them more closely:

Let d be the fixed common difference; for simplicity, Dirichlet re-
stricted himself to the case where d is an odd prime number. For each
a, 0<a<d-1, put

={a+dn |n=0,1, 2,...},

$(5:Ca) = Z < (a+ dn)s

Let x be a character of the Abelian group (Z/dZ)*, that is, a homomor-
phism of the group to C*. The values are of finite order and hence roots
of unity (yp(d)-th roots of 1 where ¢ is the Euler function). We naturally
regard x as a map from Z to C with x(m) = 0 if m is not relatively
prime to d, i.e. (m,d) # 1; thus we get Dirichlet characters modulo d
which still remain multiplicative. Define Dirichlet’s L-functions by

L) = 5 x(@)(s:Co) = Z x(m)

a=0

Then we have product formulas

1
Lsx) = [] T X

p, prime

Note that L(s;x) is a multiple of Riemann’s zeta function by a finite
product [],,(1 — p™*) for the trivial character x = 1. On one hand,
therefore, we have L(1;1) = +oco at once. Dirichlet, on the other hand,
could show that L(s; x) converges and is not equal to 0 at s = 1 for every
non-trivial x. Hence the value of log L(s; x) at s =1 is +o0 if x = 1 and
finite if x # 1. Now let us consider the series

As; X) = Z X(P)_

P, prime

Then we see from the values of log L(s; x) at s = 1 that A\(1;1) = +o0
and A(1;x) is a finite value for each non-trivial x. It follows from the
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orthogonal relations of characters that

> 1—}; =o(d) > x(a) A5 x)
X

p, prime€C,

for every a € (Z/dZ)*. Therefore the values of the right hand side at

s = 1 shows )
S et
p, primeeCq p

Hence we conclude that the set C, of integers in an arithmetic progres-
sion contains infinitely many primes if the initial term a is relatively
prime to the common difference d.

$ Dirichlet’s Class Number Formula

Dirichlet expanded his analytic method to investigate binary quad-
ratic forms. He had already concerned the works of Fermat, Euler and
Lagrange on the subject in [Di-1833,-1834]. In [Di-1834] he saw the basic
structure of the solutions of a Fermat equation £2—Dy® = 1 with D > 0,
i.e., that of the units of the real quadratic field Q(v/D).

For the first time in [Di-1838] he proved his class number formula of
binary quadratic forms with a negative prime discriminant; he introduced
Dirichlet series of the form 3727 (2);s and Zmodd(%)g'—lw, and
also 5 m—zg+2—lx]‘;:ll—r_'_cy)s where g and p are prime numbers of the form 4v+3
and 4v+1, respectively, (%) and (%) are Legendre symbols for quadratic
residues, and az? + 2bzy + cy? is a quadratic form with discriminant
—q or —p. This time he observed and compared asymptotic behaviors
of these series as s tends to 1 from the right. Then in [Di-1839] he
successfully handled general binary quadratic forms in both cases with
positive and negative discriminant D.

As soon as we translate his works in arithmetic of the quadratic field
Q(v/D), we find the zeta function of the field and its decomposition
into a product of Riemann’s zeta function and an L-function. It would
have then become a central motivation of Dedekind in number theory to
seek similar results for pure cubic fields, that is, cubic fields of the form

Q(vD).
¢ Dirichlet’s Unit Theorem

This may be a suitable place to give a remark on Dirichlet’s Unit
Theorem. As we pointed out above, he actually found the structure
of the unit group of a real quadratic field in [Di-1834] though he did
not openly handle any irrational quadratic numbers. In [Di-1841] he
introduced irrational numbers and norm forms of algebraic number fields
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as an important, interesting class of homogeneous forms of cubic and
higher degree. More precisely, let P(X) be a monic polynomial with
rational integer coefficients:

PX)=X"+a X" ' 4+a X" 2 +.. +an_1 X +an, a1, ay,... , an € Z;

suppose that P(X) is irreducible over QQ, and let @ = o, ag,-++, an
be all of the roots of P(X) =0 in C. Let Xj, Xa,..., X, be a set of
independent variables and put

n
F(X1,Xg,... , Xn) = [[(X10]71 + X202 + ... + Xn105 + Xa).
J=1

This is a homogeneous polynomial of degree n in X, Xa,..., X, with
coeflicients in Z. The favorite example of Dirichlet must be the quadratic
form X2—DY? = (X ~+vDY)(X +VDY) of a Fermat equation. As was
classically well noticed, the solutions of the Fermat equation X2~ DY? =
1, D > 0, play an important role also in solutions of X2 — DY2 = m
for an integer m > 1. Suppose, in general, that we have a solution
Ty, Ts,..., T, € Z for F(X;,Xs,..., X,) =m and Uy, Us,... U, €
Z for F(X;, Xa,..., X5) = 1. Then we can construct many other
solutions of the former equation by complez numbers

(T1a™ 4+ Tha™ 2 +. . +Th_104+Th) (Ula"_1+U2a"‘2+. . .+Un_1a+Un)N
(N € Z) in the field Q(«) if we express them in the form
$10™ 7! + 850" 2 + ...+ Sp_10+ Sn, S1, S2,...,5, €Z.

Finally in 1846, Dirichlet stated his unit theorem in the paper Zur The-
orie der Complezen Einheiten [Di-1846] which clarifies the structure of
the solutions Uy, Us,..., U, € Z for F(X;,Xa,... ,X,) = 1 through
units

Ulan_1 + U2an_-2 +...+Un1a+Un, Uy, Uy,...,Un€Z,

in the field Q(a).

E. E. Kummer started his research in cyclotomic integers in 1844
([Ku-1844]) and published his first paper on ‘ideale compleze Zahler’ in
1846 ([Ku-1846b,-1847b]). It was eventually almost in the middle of the
19th century that algebraic numbers became fully recognized as proper
arithmetic objects.
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6. Cyclotomic Fields

In the 1840’s, the German number theorists, Gauss, Jacobi, Eisen-
stein, Dirichlet, Kummer, and so on, had already started their studies
of algebraic numbers, mainly of cyclotomic integers, and compiled some
amount of knowledges on them in their pockets. The principal motiva-
tion of them was to obtain higher power residue reciprocity laws.

E. Kummer (1810-1893) may be the first person who dared to move
openly with a big stride.

¢ Divisor theory and arithmetic in cyclotomic number fields

In 1844 Kummer submitted a paper Uber die complezen Primfactoren
der Zahlen, und deren Anwendung in der Kreisteilung [Ku-1844a) to the
Berlin Academy of Science. This was not published because of Kummer’s
request of withdrawal. The fully revised and enlarged version [Ku-1844b]
was written in Latin and published in a few months; this contains a
big table of data on decomposition of prime numbers up to 1000 in the
cyclotomic field of the I-th root of unity for a prime ! up to 23. In the first
paper he erroneously stated that a prime p would be fully decomposed
into a product of prime elements in Q(¢;) if p is congruent to 1 modulo
l, where (; is a primitve [-th root of unity. In the table attached to the
revised paper contains the smallest counter example, [ = 23 and p = 47.
It was Jacobi who pointed out the error in the first paper with a counter
example for [ = 23.

Kummer was, however, confident that prime decomposition should be
uniquely done in Q(¢{;) even if it would not contain sufficiently many
prime elements. He published an outline of his epoch-making theory in
[Ku-1846b] which was republished in Journal fiir reine und angew. Math.
as Zur Theorie der complezen Zahlen [Ku-1847b] together with a full
scale paper [Ku-1847c] (see [We-1975, p.4, footnote]). His terminology
of ‘ideale complere Zahlen’ may be misleading. What he did was to
develop a divisor theory in Q(¢;). What he needed was congruence
relations modulo ‘eine complex ideale Modul. There was a serious gap
in this paper which was not realized for a while. It was finally filled
almost ten years later in 1856 by the short paper [Ku-1857a] which was
written up on June 5, 1856. With this indispensable result his theory was
completed in the paper Theorie der idealen Primfactoren der complezen
Zahlen, welche aus den Wurzeln der Gleichung w™ = 1 gebildet sind,
wenn n eine zusammengesetzte Zahl ist ([Ku-1856)).

¢ Fermat’s Last Theorem and Bernoulli Numbers

Now Kummer picked up Fermat’s Last Theorem to demonstrate the
effectiveness of his divisor theory; the reason may be partly because it
would not be so easy for him to get any substantial results on higher
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power reciprocity laws at once. Perhaps he did not think the Last The-
orem itself a very serious problem in number theory if we take his words
in the first letter to Dirichlet in [Ku-1847a]; he even called it ‘ein Cu-
riosum’ (p.139). (This paper consists of his two letters to Dirichlet with
a comment of Dirichlet on the first one.) He thought the arithmetic in
cyclotomic fields he developed was much more important than the Last
Theorem. In his second letter of [Ku-1847a] he analyses the ideal class
number h of the cyclotomic field Q(¢;) for an odd prime ! and decom-
poses it into a product of the first and the second factors h; and hao,
respectively, where hg is the class number of the maximal real subfield
Q(&+¢ ). He believed that he could have showed Fermat’s Last Theo-
rem for those odd primes ! which did not divide h. He also declared that
l divides h if and only if I divides h;. He states his class number formula
for the first factor h; and from it he gives a criterion for ! not to divide
hy in terms of Bernoulli numbers Bs, By,..., Bj_3; he believed that
infinitely many prime numbers [ satisfy this criterion. We now call an
odd prime regular if it divides none of these (I —3)/2 Bernoulli numbers.
Kummer actually showed that Fermat’s Last Theorem holds for every
regular prime. It is not, however, proved yet that there exist infinitely
many regular primes. (K. L. Jensen [Je-1915] could prove that there
exist infinitely many irregular primes of form 4n + 3; at the time he was
a student, and then did not seem to pursue any mathematical career.)
Kummer gave a precise proof for his class number formulas in [Ku-1850a]
and for the criterion of the regularity in [Ku-1850b]. A full account of his
results on Fermat’s Last Theorem for regular primes is demonstrated in
the paper [Ku-1850c]. Later in his paper [Ku-1857b] he could prove the
Last Theorem also for some irregular primes. He showed in [Ku-1851b]
that the prime numbers 37, 59 and 67 are the only irregular primes up
to 100. Later in [Ku-1874] he showed as results of laborious calculations
that 101, 103, 131, 149, 157 are consecutive irregular primes after the
first three.

He also gave the following conjecture in the paper: let a(z) and 3(z)
be the numbers of irregular primes and regular ones less than or equal
to z (> 3), respectively; then the ratio v(z) = a(z)/B(z) would tend to
1/2 as z tends to +oo. Siegel [Si-1964] proposed another value in place
of 1/2 in the conjecture so that we have

Conjecture of Siegel: v(z) would tend to e}/2 — 1 =0.648... as z
tends to +oo.

{ Higher Power Residue Reciprocity Law
In 1850 Kummer announced his prospect on the higher power residue
reciprocity law for an odd prime in [Ku-1850d]; this is a letter to Dirich-
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let. Then a big scale paper [Ku-1852] appears; here he made an exten-
sive study on cyclotomic units. The final version was published in 1859
([Ku-1859a,b]). In 1855 he introduced a new tool, Lagrangian Resolvents
for cyclotomy, in [Ku-1855]. In [Ku-1859b] we see his investigations in
Kummer extensions fully demonstrated.

As we have pointed out above, he proved Fermat’s Last Theorem for
some irregular primes in {Ku-1857b]. He handled there such an irregular
prime [ for which the class number of Q((;) is divisible by [ but not by
I2. Therefore there exists just one unramified cyclic extension of degree
l over Q(¢;) by class field theory. It is realized as a Kummer extension
Q(¢1,'/e) with some unit e in Q(¢;) as Weil pointed out in [We-1975].
This is the background where Kronecker started his career as a number
theorist.

7. Algebraic Numbers — From Divisor Theories
to Class Field Theory

In this chapter we pick up mainly four mathematicians, L. Kronecker,
R. Dedekind, H. Weber and E. I. Zolotareff. For a historical study on
the process of the establishment of the Takagi-Artin Class Field Theory
interested readers are suggested to see [Mi-1994] for example.

7.1 L. Kronecker (1823-1891)

The mathematical style of Kronecker seems very singular. It is true
that he discovered at least a few profound arithmetic phenomena and
could bravely formulate big research projects from them. T. Takagi
once called Kronecker a prophet ([Ta~1948], footnote, p.261); he made a
comment related to Tschebotareff’s Density Theorem, “His speculation

has turned out well here again.”, and chose the terminology ‘Kronecker
density’.

& Abelian polynomials over Q
In 1853 Kronecker stated the following proposition in [Kr-1853]:

Kronecker-Weber Theorem: Roots of every Abelian polynomial
with rational integer coefficients are expressed as a rational function of
a root of unity.

Here he means by an Abelian polynomial the one with a cyclic Galois
group. Later in [Kr-1877] he extends it to mean the one with an Abelian
Galois group. As for the proof of the theorem, H. Weber made a certain
contribution in [Wb-1886]. The basic tool of both authors for their trials
to prove it was Lagrangian resolvents. Both of them, however, could not
give a complete proof. An error in Weber’s paper did not seem to be
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realized for a while. He could finally give a complete proof of his own
in [Wb-1909].(II). The first complete proof of the theorem was given
by D. Hilbert in [Hi-1896]. Olaf Neumann gave a clear and detailed
explanation on the errors in the proofs based on Lagrangian resolvents
in [Ne-1981].

It must be noted that Kronecker mentions a generalization of the the-
orem at the end of [Kr-1853]; namely, roots of an Abelian polynomial
with coefficients in the Gaussian ring Z[+/—1] may be similarly treated
with the division of the lemniscate. He also indicates further general-
ization. It is probable that, at the time, he had already studied elliptic
functions with complex multiplication to some extent through Abel’s
works. Kronecker’s dream in his youth must have appeared in these
days. His words, “ ... um meinen liebsten Jugendtraum ... ”, appear
in his letter [Kr-1880b] to Dedekind written in 1880.

< Elliptic functions with complex multiplication

In 1857 he published the paper Uber die elliptischen Functionen, fiir
welche compleze Multiplication stattfindet [Kr-1857a] on arithmetic of
elliptic functions with complex multiplication. He also wrote a letter
[Kr-1857b] to Dirichlet about his findings. Though the statements of
the letter are not mathematically exact, we can vividly look over what
he had found:

Let Q(v/—D), D > 0, be an imaginary quadratic number field. Let
k be the singular modulus (in the sense of Kronecker) of an elliptic
function which has complex multiplication by the ring of integers of
Q(v—D), and H be the class number of binary quadratic forms over Z
with discriminant —D (the class number of Q(v/—D)). His findings are
as follows:
(1) the singular modulus k is a root of a polynomial of degree H (in
[Kr-1857a] he gives the correct value 6 H) over Q(v/—D) which is alge-
braically solvable;
(2) the polynomial has the property which Abel treated: namely, when
any one of the roots is chosen, every other root can be expressed as a
rational function of it, and the Galois group is commutative;
(3) H values of singular moduli k respectively correspond to the H
equivalence classes of the binary quadratic forms with discriminant —D;
(4) a certain rational function of the irrational number k£ may be regarded
as the ideal complex number corresponding to each class of quadratic
forms; etc. (For these statements we should take j-invariants instead of
k.)

In the paper [Kr-1862] he investigated the different of the Abelian
polynomial. We know that the Abelian extension Q(v/—D,j)/Q(v—D)
is unramified, and, corresponding to (4), we have
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The Principal Ideal Theorem: Every ideal of an algebraic number
field of finite degree is realized by an irrational number (i.e. becomes a
principal ideal) in the maximal unramified Abelian extension field.

Kronecker formulated this theorem as ‘die Frage der zu associirenden
Gattungen’ in [Kr-1882a). After the Takagi-Artin class field theory was
established, it was finally proved in 1930 by Ph. Furtwéngler [Fw-1930]
by making use of the general reciprocity law of E. Artin [Ar-1927,-1930].
(See [Mi-1988] for further developments on the subject including a his-
torical overview.)

We state here Kronecker’s dream in his youth. This is not mathemat-
ically precise. For a detailed mathematical discussion about it, we refer
to Zusatz 35 of [Kr-1895, pp.510-515] written by H. Hasse.

Kronecker’s Dream in his Youth: All Abelian extensions of an
imaginary quadratic field Q(v/—D) are obtained by adjoining the j-
invariant of an elliptic function with complex multiplication by the ring
of integers of Q(+/—D) and the values of the elliptic function at division
points of the periods.

This research problem seems the principal motivation of not only
H. Weber but also T. Takagi for their works on class fields. Takagi
first proved Kronecker’s Dream for the Gaussian field Q(+/—1) in his
doctoral thesis [Ta-1903]. Then he finally gave a complete proof in [Ta-
1920] with his class field theory after an important contribution by R.
Fueter [Ft-1914]. (For a historical study of class field theory, see [Mi-
1994].)

{ Divisor theory for algebraic number fields

Kronecker had a strong opinion on Kummer’s theory of ‘ideale com-
plexe Zahlen’; he thought that an important concept like ‘ideale com-
plexe Zahlen’ must be given a clear mathematical description. He seemed
to have his divisor theory for algebraic number fields of finite degree
around 1857 if we adopt Kummer’s testimony in [Ku-1859b], p.57. He
published it in [Kr-1882a] later in 1882. In this paper he also formulated
the Principal Ideal Theorem as we mentioned above. He uses (indefi-
nitely) many independent variables for his theory.

Let Q be the rational function field Q(X,Y,Z,...) in independent
variables X, Y, Z,... with coefficients in Q. We call a polynomial in Q
an integral element if its coefficients are integers, and a primitive one if
the g.c.d. of the coefficients is equal to 1. An element f of Q is expressed
in the form

f=r-(B\(X,Y,Z,...)/Ea(X.Y, Z,...))
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with r € Q, r > 0, and primitive integral elements F; and Ey € @;
it is clear that the rational number r is uniquely determined by f and
called the number factor of f. We also call f an integral elementif r € Z
to widen the concept. Then we can introduce division among integral
elements in a natural way. A divisor of 1 is a unit. An element of Q is a
unit if and only if its number factor is equal to 1; hence there are many
units, indeed. _

Now let K be an algebraic number field of finite degree and K be the
rational function field K(X,Y,Z,...). An element of K is an integral
element if it is a root of a monic polynomial whose coefficients are integral
elements of Q. Then we are able to define a unit, a prime element, etc.,
of K in a natural manner. Note that there are plenty of units in K.
We can also define a g.c.d. of a finite number of integral elements of K
though it is only determined up to units. Then we have

Theorem: For a finite number of integral elements of K, there exists
a g.c.d. of them in K.

An algebraic integer in K is an integral element of K. Tt is, therefore,
decomposed into a product of prime elements of K uniquely up to units.

As for the relation with the ideal theory of Dedekind, let o1, ao,... ,
o be algebraic integers in K, and X;, X3, ... , X, be independent vari-
ables in K. Then

o= X1+ wXe+...+anXp €K

is a g.c.d. of a1,09,... ,an in K. Hence the ideal (in the sense of
Dedekind) of K

(a1, @9,..., an)
which is generated by aj,as,...,a, corresponds to ¢ as a g.c.d. of

a1,Q9y... ,Qnp.

¢ Kronecker’s density of primes

In 1880 Kronecker [Kr-1880a] introduced a kind of density of a set of
(rational) prime numbers in connection with a polynomial.

Let F(z) be a polynomial with integer coefficients. For a prime p, let
Vp be the number of roots of the equation F(z) =0 mod p in the finite

field Z/pZ; here we count the multiplicity, of course. Then Kronecker
states

Theorem: The notation being as above, the limit of the value of the

series
~1l-w
E Vp-Dp
p, prime
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as the positive w tends to 0 is proportional to the value of log(1/w) and
coincides with log(1/w) multiplied by the number of irreducible factors
of F(z).

For each integer k, 0 < k < n := deg F, let us denote those primes p
for which the equation F(z) = 0 mod p has just k roots by p;. Then

the series become N
DILEDDS e
k=0

Assume now that the limit

—_1— -1
Dk'— : Zpk w_, : Zpk v

= i =
wo log(1/w)  w—0+ S p=i—®
exists. Then by the theorem we have

n

if F(x) is irreducible. This formula was so attractive that G. Frobenius
finally formulated a conjecture out of it in [Fr-1896a] by means of the
Galois group of the polynomial F(z) and Frobenius automorphisms.
N. Tschebotareff [Ts-1926] proved it in 1926; hence it is now called
Tschebotareff’s Density Theorem. His proof was well analyzed by O.
Schreier [Sc-1927] and supplied an essential method for E. Artin to prove
his General Reciprocity Law in 1927 ([Ar-1927]).

7.2 R. Dedekind (1831-1916)

There are two well known contributions of Dedekind to algebraic num-
ber theory, Theory of Ideals and Dedekind’s Zeta Function. It is, how-
ever, probable that his direct and indirect influences on Frobenius, H.
Weber and E. Artin do not seem to be well recognized. If we closely
study his works on number theory, we find a typical model of inter-
actions between algebraic number theory and analytic number theory.

< Basis of Algebraic Number Theory

His theory of ideals first appears in 1871 as Supplement X Uber die
Komposition der bindren quadratischen Formen to the second edition of
Dirichlet’s book of number theory, Vorlesungen iber Zahlentheorie ([De-
1871]). Then his theory of algebraic numbers grew well step by step in his
three works [De-1877a,-1879,-1893], and became a basic standard. His
terminology and even some from his notation are still commonly used.
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On the contrary, for example, we now see few of Kronecker’s (except
‘Abelian polynomials’ or ‘Abelian extensions’ and ‘complex multiplica-
tion’).

In 1900 he published a paper [De-1900] on pure cubic fields; its title
is Uber die Anzahl der Ideal-Klassen in reinen kubischen Zahlkérpern.
In the introduction he says that this is a revised version of what he
prepared in nearly two years, 1871 and 1872. It seems apparent to
me that his primary motivation toward algebraic number theory is to
generalize Dirichlet’s class number formula for a quadratic number field
to that for a pure cubic field.

The first thing he had to do for this purpose is to develop a good
divisor theory at least for a pure cubic field. Since it is not contained in
any cyclotomic field, he could not directly use Kummer’s theory of ‘ideale
complexe Zahlen’, and so gently modified Kummer’s ‘ideale complexe
Modul’. He did not need any ideal or imaginary objects because he was
ready to introduce infinite sets as concrete mathematical objects. His
Supplement X [De-1871] consists of five sections:

§159. Endlich Korper,

§160. Ganze Algebraische Zahlen,

§161. Theorie der Moduln,

§162. Ganze Zahlen eines endlichen Korpers,

§163. Theorie der Ideale eines endlichen Korpers.

After he introduces an algebraic number field K of finite degree and
algebraic integers in the first two sections, he presents a ‘Modul’ to
support congruence relation in K as an additive subgroup of K. The
word ‘Modul’ must have been taken on account of ‘modulus’ of Gauss
and ‘ideale complexe Modul’ of Kummer. For a finitely generated Z-
submodule M of K of the maximal rank, an order oas is defined as

oMm={a€K|a-MCM}

Since M is finitely generated over Z, every element of o,s is an algebraic
integer. Hence ojps is contained in the mazimal order o which is the
ring of all the integers in K. Dedekind could observe examples of such
structures in imaginary quadratic fields through complex multiplication
of elliptic functions (see Section 7.3 below). In the final section he de-

velops his divisor theory with those modules whose orders coincide with
the maximal o.

{ From Dedekind’s Zeta Functions to Artin’s L-functions

His next target was to define a zeta function (x(s) for an algebraic
number field K, and calculate its residue at s = 1 or, more precisely,
the value S = lim;—14 (s — 1){k(s). This was done in [De-1877b]. He
could express the limit value by the class number, the discriminant and
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the regulator. Here he also handled the class numbers of non-maximal
orders.

To obtain a class number formula like Dirichlet’s one, he had to decom-
pose (k(s) as a product of Riemann’s zeta function and some suitable
L-functions. To define suitable I-functions, he needs ‘characters’ with
orthogonal relations. This was not an easy task for him. He was, how-
ever, lucky enough to find Frobenius. Encouraged by Dedekind, Frobe-
nius succeeded in establishing the desired theory of group characters
for finite groups in [Fr-1896b]. (Cf. also Th. Hawkins [Hk-1970,-1974],
and [Mi-1989].) However, neither Dedekind nor Frobenius defined L-
functions with the group characters even though the latter formulated
Frobenius’ conjecture in [Fr-1896a]. The task was left to Artin [Ar-1923,-
1924b).

In 1923 E. Artin (1898-1962) published his paper [Ar-1923] under the
influence of Dedekind [De-1900]. The theme was to express the quotient
Cx(8)/¢rk(s) of Dedekind’s zeta functions for a finite meta-cyclic exten-
sion K/k of algebraic number fields in terms of L-functions. He must
have been much encouraged by Takagi [Ta-1920]. In case of an Abelian
extension, K is characterized as a congruence class field of k£ by Takagi’s
class field theory. Hence (modified) Weber’s L-functions with charac-
ters of the corresponding congruence ideal class group give a perfect
answer. (Weber did not consider congruence relations by archimedian
primes. They were first introduced by Hilbert in his theory of relative
quadratic extensions [Hi-1899]; the main theme of the paper is to show
the quadratic reciprocity law in an arbitrary algebraic number field.) In
1924 Artin gave his L-functions for an arbitrary Galois extension with
his conjectural general reciprocity law in [Ar-1924b]. Then he could give
its proof in [Ar-1927] to complete the Takagi-Artin class field theory as
we mentioned above at the end of Section 7.1.

¢ Rational Function Fields over finite fields

It may be of some interest to note Dedekind’s influence on ‘analytic
theory’ of arithmetic in function fields of one variable over a finite field.

Dedekind published a paper on the polynomial ring over a finite field
in 1857 ([De-1857]). He presented here a divisor theory in the ring.
It is apparent that Gauss [G-1801*] gave a direct motivation to him.
The article of Gauss was posthumously published in his collected works
[G-1863].1I in 1863 as was mentioned in Section 4.1 above. Dedekind
attached a note to it which he referred in a footnote of [De-1857]. In the
article Gauss had already discussed roots of a polynomial over a finite
prime field Z/pZ where p is a prime number, by utilizing the p-th power
map. (It was Galois who first (posthumously) published a paper on fi-
nite algebraic extensions of a finite prime field Z/pZ together with the
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p-th power map in [Gal-1846]. He could not see Gauss [G-1801*] which
was not yet published at the time when he prepared his paper.) Mean-
while Dedekind treated the polynomial ring analogously with the ring of
rational integers as he clearly stated. He obtains a finite extension of the
prime field by a congruence relation modulo a prime polynomial (eine
(irreductibel Function order) Primfunction) and generalize Fermat’s the-
orem. He shows, moreover, ‘the quadratic reciprocity law’ for the ring
by means of quadratic extensions.

After 62 years later H. Kornblum [Ko0-1919] picked up the polynomial
ring and proved an analogue of Dirichlet’s Prime Number Theorem in
Arithmetic Progressions.

Then in his thesis [Ar-1924a] Artin investigated the arithmetic of
quadratic extensions of the rational function field of one variable over a
finite field, and for the congruence zeta functions showed the analogue
of the functional equation of Riemann’s zeta function, and introduced
the analogue of Riemann’s hypothesis.

7.3  H. Weber (1842-1913)

At the international conference on class field theory? held at Tokyo
in 1998, P. Roquette stated that Germany was the father of class field
theory and Japan the mother. H. Weber and D. Hilbert may be most
paternal because both of them independently began to use the word
‘class field’ in different contexts ([Wb-1891] and [Hi-1897]).

Hilbert introduced the word in relation to his Theorem 94 which he
thought as the first step toward the Principal Ideal Theorem.

Weber did it in his investigation on ‘Kronecker’s dream in his youth’
which was his principal interest. He extended his concept of class fields
finally to cover those Abelian extensions of an imaginary quadratic field
which are constructed by the singular moduli and the values at division
points of the periods of elliptic functions with complex multiplication
by the base quadratic field; in [Wb-1908] he defined a class field of an
imaginary quadratic field as an Abelian extension which ‘canonically’
corresponds to a congruence ideal class group of the base field. He
was eager to determine Abelian extensions of imaginary quadratic fields
generated by the special values, but not so much to see class field theory
in general algebraic number fields even though he introduced congruence
ideal class groups and his L-functions to show one of the two fundamental
inequalities in general algebraic number fields ([Wb-1897]).

2The Proceedings: Class Field Theory - its Centenary and Prospect, ed. K. Miyake, Ad-
vanced Studies in Pure Math. 30, Math. Soc. Japan, Tokyo, 2001. This contains a paper of
H. Suzuki which gives a most general form of the Principal Ideal Theorem.
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$ Weber and Number Theory

When he started his career as a mathematician Weber worked in some
area of analysis related to partial differential equations and mathematical
physics. He was also interested in Abelian functions and Abelian inte-
grals from an analytical point of view associated, e.g., with the Dirichlet
Principle. Meanwhile these Abelian functions gave him a chance to
get an acquaintance with Dedekind. The latter was trying to publish
the works on Abelian functions of the late colleague B. Riemann at
Gottingen; Riemann died in 1866. He asked Clebsch to help him who,
however, died soon in 1872. Then he decided to invite Weber for the
help. Their cooperation produced the first edition of Riemann’s Col-
lected Works in 1876. (Cf. Aurel Voss [Vo-1914] and Frei [Fre-1989].)
Then in 1882 they published the big work [DW-1882] on the theory
of algebraic functions. Here we see clearly an analogy between alge-
braic number fields and algebraic function fields. For example, ‘ideale
Theiler’ and ‘Modul’ were introduced in the theory. In 1882 Weber
also published his first paper of number theory, Beweis des Satzes, dass
jede eigentlich primitive quadratische Form unendlich viele Primzahlen
darstellen ([Wb-1882]); as the title shows, this is a quadratic version
of Dirichlet’s Prime Number Theorem. In the introduction Weber also
mentioned Kronecker’s papers [Kr-1857a] and [Kr-1880a]; the former is
on elliptic functions with complex multiplication and the latter on the
densities of sets of primes determined by congruence properties of a
polynomial which also attracted Frobenius (see Section 7.1).

{ Kronecker-Weber Theorem

In 1886 Weber published a colossal work [Wb-1886] in two parts to
prove the Kronecker-Weber Theorem. As it was noted in Section 7.1, this
contains a gap though it did not seem to be immediately realized. The
theorem itself was, however, soon given a new proof by Hilbert [Hi-1896];
his approach, based on Minkowski’s result in the Geometry of Numbers
([M-1896]), was quite new with his theory of ramification of ideals ([Hi-
1894]). Weber published another paper [Wb-1909].(I) on the theorem
later in 1909. Perhaps, he was stimulated by Mertens [Me-1906]. Both of
them, however, contain errors. As for Weber’s paper, Frobenius pointed
out two errors. Then in 1911 Weber published his corrected and first
perfect proof of the Kronecker-Weber Theorem in [Wb-1909].(II). For
the details on the history of the theorem and a complete proof based
on Lagrangian Resolvents the reader should see the interesting paper
[Ne-1981] of Olaf Neumann.
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¢ Congruence ideal class groups and Weber’s L-functions

As we have pointed out a few times, Weber eagerly investigated exten-
sion fields of an imaginary quadratic field constructed with the singular
moduli and the values at division points of an elliptic function which has
complex multiplication with numbers of the base field. Through them
he exstracted the concept of congruence ideal class groups and devel-
oped his analytic theory with his L-functions in an arbitrary algebraic
number field in his paper [Wb-1897].

Here we explain how a congruence ideal class group comes out from
division points of periods of such an elliptic function. For the sake of
simplicity, we do not adhere to historical context.

Let ¢ = ¢(2) be an elliptic function; it is a meromorphic function
on the complex plane C with two independent periods wj, wse over R;
o(z) = p(z +w1) = p(z + ws), wy, we € C*, wa € Rw;. Then we have
¢(2) = p(z + w) for each element w of

Zwy + Lws = {mwy + nwe | m, n € Z}.

We may assume that the imaginary part Im(7) is positive for 7 = wy /wa
by changing w; and ws if necessary. If an elliptic function is not a
constant, all of its periods are given as a Z-module Zw; + Zwy with a
suitable pair w; and wa.

Conversely, for such a pair w; and we, there exist those elliptic func-
tions the set of periods of which coincides with the module Q := Zw, +
Zuws; for example, the Weierstrass p-function p(z) = p(w;,ws; 2) and its
derivative p/(z) are such.

The set of all elliptic funcions that admit 2 as their periods (including
constant functions) form an algebraic function field Rg; if we take z :=
p(2) and y := ¢(2), then we have Rq = C(z,y) with the relation y? =
423 — gox — g3. The discriminant g3 —27g2 of the cubic polynomial is not
equal to 0. Put j = g3/(g3 —27¢3). Then both of the numerator and the
denominator are homogeneous functions of wy and wy of the same degree.
Therefore, this may be considered as a function of 7 = wy/we: j = j(7),
Im(7) > 0. For another ' = Zw] + Zwj, ' = w}/wh, two function fields
R and Rqy are isomorphic over C if and only if j(7) = j(7'). The fields
R and Rq are naturally identified with the fields of all meromorphic
functions on the complex tori C/Q¥ and C/€, respectively. Therefore,
an isomorphism of the two fields corresponds to an isomorphism of these
two complex tori f : C/QQ — C/Q. Combining f with the translation
on C/ by —f(0), we may assume f(0) = 0. Then, as is well known,
this isomorphism f is induced from the multiplication by « € C on C; a
must satisfy the condition a2 = €¥’. In other words, an isomorphism of
the algebraic function fields Rq: and Rq is essentially obtained by the
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variable change from z to az. If we take o = w; ' then the periods w;
and wo are changed to 1 and 7T respectively.

Let us take 2 = Z + Z7. For A = (Ccl Z ) € SLa(Z), put A(r) =
(ar + b)/(cr + d). Since A induces just a basis change on 2, we have
j(A(1)) = j(7) by the isomorphism invariant property of j explained
above.

If O is a submodule of 2, then the complex torus C/Y is a Galois
covering of C/{2 with the covering group Q/€?; and hence Rq//Rq is an
algebraic extension of finite degree.

Suppose now that an elliptic function ¢(2) with the periods Q has
complex multiplication by g € C — R. This means that two elliptic
functions ¢(z) and ¢(uz) have an algebraic relation; in other words, we
may say that the periods Q and p~!Q) are commensurable, i.e. that
the intersection of the two modules has finite indices in both of 2 and
£~1Q. Hence we can find a positive integer N such as NQ C x~10, and
then we have (uN)§) C Q. For simplicity we may consider the case of

uQ C Q. Then there is A = (Ccl Z ) € GLo(Q) with a, b, ¢, d € Z so

that we have y (;) =A (71- ) . Hence p is an eigenvalue of A, and is an

algebraic integer in the quadratic field Q(u). We easily see Q(r) = Q(7),
and that it is an imaginary quadratic field. Thus we have a ‘Modul’
in k := Q(u) = Q(7) and a fractional ideal Q of the order oq. It is now
clear that two fractional ideals Q and €’ of the same order o’ := 0q = ogy
give isomorphic elliptic function fields Rg and Rq if and only if there
exists an element o € k with the property Q) = Q. Here we have the
ideal class group of an oder o’ of the imaginary quadratic field k. For
the maximal oder o of k we have the following theorem:

Theorem: Let k be an imaginary quadratic field and Cl(k) be the
(absolute) ideal class group of k. Each class of Cl(k) corresponds to
an isomorphism class of elliptic function fields among whose modules of
periods we can choose an ideal w = Z + Zr, Im(7) > 0, from the ideal
class as is explained above. Then the extension k(j(7))/k is Abelian and
unramified, and the Galois group is isomorphic to Cl(k). Every ideal of
k becomes a principal one if it is lifted to the ideal of k(j(7)).

All of the contents of the theorem were finally proved by Weber in
[WDb-1908].

Weber further considered the field obtained by adjoining the values
of elliptic functions at division points of the periods. Let d be a positive
integer. Then the d-th division points of the periods are given by the
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set d"'tv/tv on the complex torus C/tvo. Let ¢(z) be an elliptic function
whose period module is tv, and « an element of k<. We have p(ad™lw) =
@(d~lw) for every w € w if and only if ad™'w = d~'w mod tv for every
w € tv; that is, o acts trivially on d'to/tv. In other words, we have

(¢ —1)d'w=0 modt forevery w € 10

and hence (a — 1)d~!tv C tv. Multiplying both sides by the ideal dro~1,
we finally have the condition

a=1 mod do.

If we replace d by an integral ideal m and consider m-th division points
m~lto/to, then we have a condition

a=1 modm

on o € k*. The multiplicative subgroup {a € k* | « =1 mod m} of
k* is the Strahl or the ray (in English) modulo m. Thus we have the
congruence ideal class group A(m)/S(m) modulo m where A(m) is the
multiplicative group of those ideals which are relatively prime to m and
S(m) is the group of principal ideals coming from the Strahl:

S(m)={(a) | @€ k*, a=1 mod m}.

In [Wb-1897] Weber introduced congruence ideal class groups of the
form A(m)/H(m) where H(m) is an intermediate group of A(m) D S(m)
in an arbitrary algebraic number field K of finite degree as well as his
L-functions

/ a
= Y xOus0= ¥ PO
CeA(m)/H(m) acA(m) ~ £/Q
through the partial zeta-functions

! 1
C) =2 N7
C(S ) =~ NK/Q(G)S

where C is a class in A(m)/H(m), ¥’ is the summation over integral
ideals and x is a character of the abelian group A(m)/H(m).
By the time of his article [Wb-1900], he had proved that the extension

k(G (), (u) | v € m™ )/k(5(T))
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is Abelian with the Galois group isomorphic to m~!to/r. In [Wb-1908]
he was able to show finally that the field k(j(7),¢(u) | v € m™w) is
Abelian over the base quadratic field k with the Galois group isomorphic
to A(m)/S(m). Then he decisively called all of these fields class fields of
k

Hilbert introduced sign distribution at Archimedian primes in his pa-
per [Hi-1899] to handle quadratic extensions over an arbitrary algebraic
number field and show the quadratic reciprocity law in the most general
framework. Then Takagi used congruence ideal class groups for mod-
ulus including Archimedian primes to establish his class field theory in
[Ta-1915,-1920].

Once the existence of the class field M/K for each congruence ideal
class group A(m)/H (m) is assured by Takagi, then Weber’s L-functions
supply a natural decomposition of the quotient of the Dedekind zeta
functions,

(8)/¢x (s HLsx

where ], is the product over all non-tr1v1al characters of the Abelian
group A(m)/H(m). These examples stimulated Artin to define his L-
functions in [Ar-1924Db] as was noted in the previous Section.

7.4 E. 1. Zolotareff (1847-1878)

In this final section of the present article, we see the motivation of
Zolotareff who also developed a divisor theory in an algebraic number
field. Although his work is not directly related to our main purpose of
this article, it may be of some interest to look into the St. Petersburg
school of number theory where Tschebotareff soon came to make a big
contribution toward Artin’s proof of his general reciprocity law.

P. L. Tchebychef was probably the most influential Russian mathe-
matician who raised the modern school of number theory at St. Peters-
burg. We have mentioned his works [Tc-1849,-1852] on distribution of
prime numbers in Section 2.2. Beside them he published several pa-
pers on continued fraction expansions. And he came across Abel’s pa-
per [Ab-1826]; here Abel gave a criterion by which one can determine
whether hyperelliptic integrals be expressed by logarithm functions and
which depends on periodicity of the continued fraction expansions of the
square roots in the integrals (cf. Section 4.2). In his paper [Tc-1861] he

dealt with the elliptic ¢ z+4 ith rati
ith the elliptic case 7z 4+am3+ﬁm2+7z+6dm with rational numbers

o, B, v, 6, and gave an effective criterion for the case. Since Abel’s
criterion says that the expansion is to be periodic in a specific form, it
so happened that there cannot exist any effective bounds of the periods
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for all of hyperelliptic integrals of the kind. Here is the point of Tcheby-
chef’s criterion; and he had to restrict himself to rational coefficients.
In this case one can assume without losing generality that the coeffi-
cients are rational integers. The basic tool is Jacobi transformations.
Then the integrability by logarithms is reduced to a kind of Diophantine
problems which have only a finite number of solutions. In the process
one cannot dispense with the Fundamental Theorem of Arithmetic. He

states as one of examples that the integral function of mﬁé—rﬂ_fsz—zdx
cannot be expressed by logarithm functions for any values of A. He

did not, however, give any proofs nor brief explanations in the paper.
Then Zolotareff published a detailed proof of Tchebychef’s criterion in
[Zo-1874].

In his paper [Zo-1880] of his divisor theory in algebraic number fields
(which was posthumously published), Zolotareff says that he tried to
generalize Kummer’s theory to extend Tchebychef’s method for any real
coefficients (des valeurs réelles quelconques). He even states, after re-
ferring to Selling [Se-1865] and Dedekind [De-1871], that there have not
been any theories yet which matches Kummer’s. (E. Selling [Se-1865]
contains a serious error.) It appears that he faithfully followed Kum-
mer’s way. To utilize it to his concrete problems, he found it best. Here
he means real algebraic numbers by ‘des valeurs réelles quelconques’.
We may safely suppose that he would have liked to handle much wider
integrals at least including Abel’s example

LL)
'/\/x2 (\/5—1)233

with Tchebychef’s method.

Zolotareff, as a young hope of Tchebychef’s school at the time, ob-
tained his degree in 1874 and was selected to be a member of St. Pe-
tersburg Academy of Science in 1876. It is probable that he was the
first number theorist in the school who worked on algebraic numbers.
It is, however, regrettable to say that he passed away at the age of 31
in 1878 because of blood poisoning caused by a car accident; cf. A. N.
Kolmogorov and A. P. Yushkevich [KY-1992].
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